These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35850048)

  • 41. HISEA: HIerarchical SEed Aligner for PacBio data.
    Khiste N; Ilie L
    BMC Bioinformatics; 2017 Dec; 18(1):564. PubMed ID: 29258419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast inexact mapping using advanced tree exploration on backward search methods.
    Salavert J; Tomás A; Tárraga J; Medina I; Dopazo J; Blanquer I
    BMC Bioinformatics; 2015 Jan; 16():18. PubMed ID: 25626517
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.
    Kim JS; Senol Cali D; Xin H; Lee D; Ghose S; Alser M; Hassan H; Ergin O; Alkan C; Mutlu O
    BMC Genomics; 2018 May; 19(Suppl 2):89. PubMed ID: 29764378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Survey of Software and Hardware Approaches to Performing Read Alignment in Next Generation Sequencing.
    Al Kawam A; Khatri S; Datta A
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1202-1213. PubMed ID: 27362989
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A survey of sequence alignment algorithms for next-generation sequencing.
    Li H; Homer N
    Brief Bioinform; 2010 Sep; 11(5):473-83. PubMed ID: 20460430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NanoPipe-a web server for nanopore MinION sequencing data analysis.
    Shabardina V; Kischka T; Manske F; Grundmann N; Frith MC; Suzuki Y; Makałowski W
    Gigascience; 2019 Feb; 8(2):. PubMed ID: 30689855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. LRCstats, a tool for evaluating long reads correction methods.
    La S; Haghshenas E; Chauve C
    Bioinformatics; 2017 Nov; 33(22):3652-3654. PubMed ID: 29036421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Review of alignment and SNP calling algorithms for next-generation sequencing data.
    Mielczarek M; Szyda J
    J Appl Genet; 2016 Feb; 57(1):71-9. PubMed ID: 26055432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NGS-QCbox and Raspberry for Parallel, Automated and Rapid Quality Control Analysis of Large-Scale Next Generation Sequencing (Illumina) Data.
    Katta MA; Khan AW; Doddamani D; Thudi M; Varshney RK
    PLoS One; 2015; 10(10):e0139868. PubMed ID: 26460497
    [TBL] [Abstract][Full Text] [Related]  

  • 50. BIMA V3: an aligner customized for mate pair library sequencing.
    Drucker TM; Johnson SH; Murphy SJ; Cradic KW; Therneau TM; Vasmatzis G
    Bioinformatics; 2014 Jun; 30(11):1627-9. PubMed ID: 24526710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications.
    Prodanov T; Bansal V
    Nucleic Acids Res; 2020 Nov; 48(19):e114. PubMed ID: 33035301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Full-Length Envelope Analyzer (FLEA): A tool for longitudinal analysis of viral amplicons.
    Eren K; Weaver S; Ketteringham R; Valentyn M; Laird Smith M; Kumar V; Mohan S; Kosakovsky Pond SL; Murrell B
    PLoS Comput Biol; 2018 Dec; 14(12):e1006498. PubMed ID: 30543621
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast and accurate mapping of Complete Genomics reads.
    Lee D; Hormozdiari F; Xin H; Hach F; Mutlu O; Alkan C
    Methods; 2015 Jun; 79-80():3-10. PubMed ID: 25461772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comprehensive evaluation of long read error correction methods.
    Zhang H; Jain C; Aluru S
    BMC Genomics; 2020 Dec; 21(Suppl 6):889. PubMed ID: 33349243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Short read alignment with populations of genomes.
    Huang L; Popic V; Batzoglou S
    Bioinformatics; 2013 Jul; 29(13):i361-70. PubMed ID: 23813006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RepLong: de novo repeat identification using long read sequencing data.
    Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z
    Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology.
    Ruan J; Jiang L; Chong Z; Gong Q; Li H; Li C; Tao Y; Zheng C; Zhai W; Turissini D; Cannon CH; Lu X; Wu CI
    BMC Genomics; 2013 Oct; 14(1):711. PubMed ID: 24134808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RazerS--fast read mapping with sensitivity control.
    Weese D; Emde AK; Rausch T; Döring A; Reinert K
    Genome Res; 2009 Sep; 19(9):1646-54. PubMed ID: 19592482
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient alignment of pyrosequencing reads for re-sequencing applications.
    Fernandes F; da Fonseca PG; Russo LM; Oliveira AL; Freitas AT
    BMC Bioinformatics; 2011 May; 12():163. PubMed ID: 21672185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.