These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35850094)

  • 41. A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces.
    Xiao X; Wang L; Xu M; Wang K; Jung TP; Ming D
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37683663
    [No Abstract]   [Full Text] [Related]  

  • 42. Enhancing detection of steady-state visual evoked potentials using channel ensemble method.
    Yan W; Du C; Luo D; Wu Y; Duan N; Zheng X; Xu G
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33601356
    [No Abstract]   [Full Text] [Related]  

  • 43. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface.
    Chen YF; Atal K; Xie SQ; Liu Q
    J Neural Eng; 2017 Aug; 14(4):046028. PubMed ID: 28357991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A study on dynamic model of steady-state visual evoked potentials.
    Zhang S; Han X; Chen X; Wang Y; Gao S; Gao X
    J Neural Eng; 2018 Aug; 15(4):046010. PubMed ID: 29616978
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces.
    Kiran Kumar GR; Ramasubba Reddy M
    J Neural Eng; 2019 Aug; 16(4):046004. PubMed ID: 30917349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dataset Evaluation Method and Application for Performance Testing of SSVEP-BCI Decoding Algorithm.
    Liang L; Zhang Q; Zhou J; Li W; Gao X
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514603
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phase-Locked Time-Shift Data Augmentation Method for SSVEP Brain-Computer Interfaces.
    Mai X; Ai J; Wei Y; Zhu X; Meng J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4096-4105. PubMed ID: 37815966
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Weak Feature Extraction and Strong Noise Suppression for SSVEP-EEG Based on Chaotic Detection Technology.
    Zhang K; Xu G; Du C; Wu Y; Zheng X; Zhang S; Han C; Liang R; Chen R
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():862-871. PubMed ID: 33872154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Filter bank temporally local multivariate synchronization index for SSVEP-based BCI.
    Xu T; Ji Z; Xu X; Wang L
    BMC Bioinformatics; 2024 Jul; 25(1):227. PubMed ID: 38956454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Learning to control an SSVEP-based BCI speller in naïve subjects.
    Zhihua Tang ; Yijun Wang ; Guoya Dong ; Weihua Pei ; Hongda Chen
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1934-1937. PubMed ID: 29060271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using Determinant Point Process in Generative Adversarial Networks for SSVEP Signals Synthesis.
    Wang J; Wang L; Han J; Mu W; Wang P; Zhang X; Zhan G; Zhang L; Gan Z; Kang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces.
    Cao T; Wan F; Wong CM; da Cruz JN; Hu Y
    Biomed Eng Online; 2014 Mar; 13(1):28. PubMed ID: 24621009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross Domain Correlation Maximization for Enhancing the Target Recognition of SSVEP-Based Brain-Computer Interfaces.
    Lan W; Wang R; He Y; Zong Y; Leng Y; Iramina K; Zheng W; Ge S
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3545-3555. PubMed ID: 37639414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Novel Hybrid Brain-Computer Interface Combining the Illusion-Induced VEP and SSVEP.
    Li R; Zhao X; Wang Z; Xu G; Hu H; Zhou T; Xu T
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4760-4772. PubMed ID: 38015667
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing a left and right visual field biphasic stimulation paradigm for SSVEP-based BCIs with hairless region behind the ear.
    Liang L; Bin G; Chen X; Wang Y; Gao S; Gao X
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34875637
    [No Abstract]   [Full Text] [Related]  

  • 59. An Adaptive Task-Related Component Analysis Method for SSVEP Recognition.
    Oikonomou VP
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298064
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface.
    Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.