BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35850095)

  • 1. Intracellular sodium concentration and membrane potential oscillation in axonal conduction block induced by high-frequency biphasic stimulation.
    Zhong Y; Zhang X; Beckel J; de Groat WC; Tai C
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35850095
    [No Abstract]   [Full Text] [Related]  

  • 2. High-frequency stimulation induces axonal conduction block without generating initial action potentials.
    Zhong Y; Wang J; Beckel J; de Groat WC; Tai C
    J Comput Neurosci; 2022 May; 50(2):203-215. PubMed ID: 34800252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms Underlying Poststimulation Block Induced by High-Frequency Biphasic Stimulation.
    Zhong Y; Wang J; Beckel J; de Groat WC; Tai C
    Neuromodulation; 2023 Apr; 26(3):577-588. PubMed ID: 34278654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation analysis of conduction block in unmyelinated axons induced by high-frequency biphasic electrical currents.
    Tai C; de Groat WC; Roppolo JR
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1323-32. PubMed ID: 16041996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of nerve conduction block induced by high-frequency biphasic electrical currents.
    Zhang X; Roppolo JR; de Groat WC; Tai C
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2445-54. PubMed ID: 17153201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of conduction block in amphibian myelinated axon induced by biphasic electrical current at ultra-high frequency.
    Tai C; Guo D; Wang J; Roppolo JR; de Groat WC
    J Comput Neurosci; 2011 Nov; 31(3):615-23. PubMed ID: 21523417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model.
    Tai C; de Groat WC; Roppolo JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):415-22. PubMed ID: 16200764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature Effect on Nerve Conduction Block Induced by High-Frequency (kHz) Biphasic Stimulation.
    Chen J; Zhong Y; Wang J; Shen B; Beckel J; de Groat WC; Tai C
    Neuromodulation; 2023 Apr; 26(3):607-613. PubMed ID: 35088749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of non-symmetric waveform on conduction block induced by high-frequency (kHz) biphasic stimulation in unmyelinated axon.
    Zhao S; Yang G; Wang J; Roppolo JR; de Groat WC; Tai C
    J Comput Neurosci; 2014 Oct; 37(2):377-86. PubMed ID: 24928360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of frequency and temperature on the mechanisms of nerve conduction block induced by high-frequency biphasic electrical current.
    Wang J; Shen B; Roppolo JR; de Groat WC; Tai C
    J Comput Neurosci; 2008 Apr; 24(2):195-206. PubMed ID: 17682929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poststimulation Block of Pudendal Nerve Conduction by High-Frequency (kHz) Biphasic Stimulation in Cats.
    Wang Z; Pace N; Cai H; Shen B; Wang J; Roppolo JR; de Groat WC; Tai C
    Neuromodulation; 2020 Aug; 23(6):747-753. PubMed ID: 32840020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model Analysis of Post-Stimulation Effect on Axonal Conduction and Block.
    Zhong Y; Wang J; Beckel J; de Groat WC; Tai C
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):2974-2985. PubMed ID: 33544668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation analysis of conduction block in myelinated axons induced by high-frequency biphasic rectangular pulses.
    Zhang X; Roppolo JR; de Groat WC; Tai C
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1433-6. PubMed ID: 16830949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model Analysis of Post-Stimulation Block of a Myelinated Axon by Direct Current.
    Jian J; Beckel JM; de Groat WC; Tai C
    IEEE Trans Biomed Eng; 2023 Aug; 70(8):2384-2394. PubMed ID: 37022874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pudendal Nerve Block by Adaptively Stepwise Increasing the Intensity of High-Frequency (10 kHz) Biphasic Stimulation.
    Jian J; Wang J; Shen B; Shen Z; Goosby K; Scolieri J; Beckel J; de Groat WC; Tai C
    Neuromodulation; 2023 Apr; ():. PubMed ID: 37125972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location.
    Crago PE; Makowski NS
    J Neural Eng; 2014 Oct; 11(5):056016. PubMed ID: 25161163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling analysis of negative effects of high frequency electrical stimulation on axonal behaviors.
    Sun L; Liu H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5958-61. PubMed ID: 24111096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pudendal Nerve Block by Low-Frequency (≤1 kHz) Biphasic Electrical Stimulation.
    Shapiro K; Guo W; Armann K; Pace N; Shen B; Wang J; Beckel J; de Groat W; Tai C
    Neuromodulation; 2021 Aug; 24(6):1012-1017. PubMed ID: 32762142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of slow potassium current in nerve conduction block induced by high-frequency biphasic electrical current.
    Liu H; Roppolo JR; de Groat WC; Tai C
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):137-46. PubMed ID: 19224727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms involved in differential conduction of potentials at high frequency in a branching axon.
    Grossman Y; Parnas I; Spira ME
    J Physiol; 1979 Oct; 295():307-22. PubMed ID: 521940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.