These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35850262)
1. The accelerated evolution of human cytochrome c oxidase - Selection for reduced rate and proton pumping efficiency? Rottenberg H Biochim Biophys Acta Bioenerg; 2022 Nov; 1863(8):148595. PubMed ID: 35850262 [TBL] [Abstract][Full Text] [Related]
2. The evolution of the human mitochondrial bc1 complex- adaptation for reduced rate of superoxide production? Rottenberg H J Bioenerg Biomembr; 2023 Feb; 55(1):15-31. PubMed ID: 36737563 [TBL] [Abstract][Full Text] [Related]
3. Hypoxia-inducible gene domain 1 proteins in yeast mitochondria protect against proton leak through complex IV. Hoang NH; Strogolova V; Mosley JJ; Stuart RA; Hosler J J Biol Chem; 2019 Nov; 294(46):17669-17677. PubMed ID: 31591265 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of mammalian complex IV inhibition by steroids. Di Trani JM; Moe A; Riepl D; Saura P; Kaila VRI; Brzezinski P; Rubinstein JL Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2205228119. PubMed ID: 35858451 [TBL] [Abstract][Full Text] [Related]
5. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates. Schmidt TR; Wildman DE; Uddin M; Opazo JC; Goodman M; Grossman LI Proc Natl Acad Sci U S A; 2005 May; 102(18):6379-84. PubMed ID: 15851671 [TBL] [Abstract][Full Text] [Related]
6. The yeast mitochondrial proteins Rcf1 and Rcf2 support the enzymology of the cytochrome Strogolova V; Hoang NH; Hosler J; Stuart RA J Biol Chem; 2019 Mar; 294(13):4867-4877. PubMed ID: 30683696 [TBL] [Abstract][Full Text] [Related]
7. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates. Wu W; Goodman M; Lomax MI; Grossman LI J Mol Evol; 1997 May; 44(5):477-91. PubMed ID: 9115172 [TBL] [Abstract][Full Text] [Related]
8. Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates. Uddin M; Opazo JC; Wildman DE; Sherwood CC; Hof PR; Goodman M; Grossman LI BMC Evol Biol; 2008 Jan; 8():8. PubMed ID: 18197981 [TBL] [Abstract][Full Text] [Related]
9. Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates. Goldberg A; Wildman DE; Schmidt TR; Huttemann M; Goodman M; Weiss ML; Grossman LI Proc Natl Acad Sci U S A; 2003 May; 100(10):5873-8. PubMed ID: 12716970 [TBL] [Abstract][Full Text] [Related]
10. The proton pump of heme-copper oxidases. Papa S; Capitanio N; Glaser P; Villani G Cell Biol Int; 1994 May; 18(5):345-55. PubMed ID: 8049679 [TBL] [Abstract][Full Text] [Related]
11. Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases. Papa S; Capitanio N; Villani G; Capitanio G; Bizzoca A; Palese LL; Carlino V; De Nitto E Biochimie; 1998 Oct; 80(10):821-36. PubMed ID: 9893941 [TBL] [Abstract][Full Text] [Related]
12. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system. Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549 [TBL] [Abstract][Full Text] [Related]
13. A new model for the evolution of carnivory in the bladderwort plant (utricularia): adaptive changes in cytochrome C oxidase (COX) provide respiratory power. Laakkonen L; Jobson RW; Albert VA Plant Biol (Stuttg); 2006 Nov; 8(6):758-64. PubMed ID: 17203431 [TBL] [Abstract][Full Text] [Related]
14. Cytochrome c oxidase: catalytic cycle and mechanisms of proton pumping--a discussion. Michel H Biochemistry; 1999 Nov; 38(46):15129-40. PubMed ID: 10563795 [TBL] [Abstract][Full Text] [Related]
15. Rapid nonsynonymous evolution of the iron-sulfur protein in anthropoid primates. Doan JW; Schmidt TR; Wildman DE; Goodman M; Weiss ML; Grossman LI J Bioenerg Biomembr; 2005 Feb; 37(1):35-41. PubMed ID: 15906147 [TBL] [Abstract][Full Text] [Related]
16. The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A. Rauhamäki V; Wikström M Biochim Biophys Acta; 2014 Jul; 1837(7):999-1003. PubMed ID: 24583065 [TBL] [Abstract][Full Text] [Related]
17. Accelerated Evolution of Cytochrome Brand SE; Scharlau M; Geren L; Hendrix M; Parson C; Elmendorf T; Neel E; Pianalto K; Silva-Nash J; Durham B; Millett F Cells; 2022 Dec; 11(24):. PubMed ID: 36552779 [TBL] [Abstract][Full Text] [Related]
18. The O(2) reduction and proton pumping gate mechanism of bovine heart cytochrome c oxidase. Yoshikawa S; Muramoto K; Shinzawa-Itoh K Biochim Biophys Acta; 2011 Oct; 1807(10):1279-86. PubMed ID: 21718684 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex. Osada N; Akashi H Mol Biol Evol; 2012 Jan; 29(1):337-46. PubMed ID: 21890478 [TBL] [Abstract][Full Text] [Related]
20. Decoupling mutations in the D-channel of the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that a continuous hydrogen-bonded chain of waters is essential for proton pumping. Zhu J; Han H; Pawate A; Gennis RB Biochemistry; 2010 Jun; 49(21):4476-82. PubMed ID: 20441187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]