These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35850321)
1. The influence of a vibrotactile biofeedback system on postural dynamics during single-leg standing in healthy older adults. Kodama K; Yasuda K; Akatsuka T; Kuznetsov NA; Iwata H Neurosci Lett; 2022 Aug; 786():136807. PubMed ID: 35850321 [TBL] [Abstract][Full Text] [Related]
2. Balance Training With a Vibrotactile Biofeedback System Affects the Dynamical Structure of the Center of Pressure Trajectories in Chronic Stroke Patients. Kodama K; Yasuda K; Kuznetsov NA; Hayashi Y; Iwata H Front Hum Neurosci; 2019; 13():84. PubMed ID: 30914938 [TBL] [Abstract][Full Text] [Related]
3. The effect of a haptic biofeedback system on postural control in patients with stroke: An experimental pilot study. Yasuda K; Kaibuki N; Harashima H; Iwata H Somatosens Mot Res; 2017 Jun; 34(2):65-71. PubMed ID: 28372470 [TBL] [Abstract][Full Text] [Related]
4. The effects of visual biofeedback and visual biofeedback scale size on single limb balance. Chamberlin C; Marmelat V; Rosen AB; Burcal CJ J Bodyw Mov Ther; 2021 Apr; 26():268-272. PubMed ID: 33992257 [TBL] [Abstract][Full Text] [Related]
5. Assessment of postural balance in community-dwelling older adults - methodological aspects and effects of biofeedback-based Nintendo Wii training. Jørgensen MG Dan Med J; 2014 Jan; 61(1):B4775. PubMed ID: 24393594 [TBL] [Abstract][Full Text] [Related]
6. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults. Yasuda K; Saichi K; Iwata H Front Med (Lausanne); 2018; 5():149. PubMed ID: 29868597 [TBL] [Abstract][Full Text] [Related]
7. Haptic-based perception-empathy biofeedback system for balance rehabilitation in patients with chronic stroke: Concepts and initial feasibility study. Yasuda K; Saichi K; Kaibuki N; Harashima H; Iwata H Gait Posture; 2018 May; 62():484-489. PubMed ID: 29677663 [TBL] [Abstract][Full Text] [Related]
8. Vibrotactile Feedback Alters Dynamics Of Static Postural Control In Persons With Parkinson's Disease But Not Older Adults At High Fall Risk. High CM; McHugh HF; Mills SC; Amano S; Freund JE; Vallabhajosula S Gait Posture; 2018 Jun; 63():202-207. PubMed ID: 29772496 [TBL] [Abstract][Full Text] [Related]
9. Effectiveness of different visual biofeedback signals for human balance improvement. Halická Z; Lobotková J; Bučková K; Hlavačka F Gait Posture; 2014; 39(1):410-4. PubMed ID: 24001870 [TBL] [Abstract][Full Text] [Related]
10. Benefits of multi-session balance and gait training with multi-modal biofeedback in healthy older adults. Lim SB; Horslen BC; Davis JR; Allum JH; Carpenter MG Gait Posture; 2016 Jun; 47():10-7. PubMed ID: 27264396 [TBL] [Abstract][Full Text] [Related]
11. The complexity of standing postural control in older adults: a modified detrended fluctuation analysis based upon the empirical mode decomposition algorithm. Zhou J; Manor B; Liu D; Hu K; Zhang J; Fang J PLoS One; 2013; 8(5):e62585. PubMed ID: 23650518 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of Nintendo Wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial. Jorgensen MG; Laessoe U; Hendriksen C; Nielsen OB; Aagaard P J Gerontol A Biol Sci Med Sci; 2013 Jul; 68(7):845-52. PubMed ID: 23114461 [TBL] [Abstract][Full Text] [Related]
13. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study. Bao T; Carender WJ; Kinnaird C; Barone VJ; Peethambaran G; Whitney SL; Kabeto M; Seidler RD; Sienko KH J Neuroeng Rehabil; 2018 Jan; 15(1):5. PubMed ID: 29347946 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of visual versus auditory biofeedback training for voluntary postural sway. Hasegawa N; Takeda K; Mancini M; King LA; Horak FB; Asaka T PLoS One; 2020; 15(12):e0244583. PubMed ID: 33370408 [TBL] [Abstract][Full Text] [Related]
16. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training. Hasegawa N; Takeda K; Sakuma M; Mani H; Maejima H; Asaka T Gait Posture; 2017 Oct; 58():188-193. PubMed ID: 28800501 [TBL] [Abstract][Full Text] [Related]
17. Hip Sway in Patients With Hip Osteoarthritis During One-Leg Standing With a Focus on Time Series Data. Ibara T; Takahashi M; Shinkoda K; Kawashima M; Anan M Motor Control; 2021 Jun; 25(3):502-518. PubMed ID: 34098529 [TBL] [Abstract][Full Text] [Related]
18. Effects of linear versus sigmoid coding of visual or audio biofeedback for the control of upright stance. Dozza M; Chiari L; Hlavacka F; Cappello A; Horak FB IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):505-12. PubMed ID: 17190042 [TBL] [Abstract][Full Text] [Related]
19. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson's disease and healthy elderly people: a proof-of-concept study. Lee BC; Thrasher TA; Fisher SP; Layne CS J Neuroeng Rehabil; 2015 Sep; 12():75. PubMed ID: 26329918 [TBL] [Abstract][Full Text] [Related]
20. Improving impaired balance function: real-time versus carry-over effects of prosthetic feedback. Allum JH; Carpenter MG; Horslen BC; Davis JR; Honegger F; Tang KS; Kessler P Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1314-8. PubMed ID: 22254558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]