These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35851580)

  • 1. Orexin neurons inhibit sleep to promote arousal.
    De Luca R; Nardone S; Grace KP; Venner A; Cristofolini M; Bandaru SS; Sohn LT; Kong D; Mochizuki T; Viberti B; Zhu L; Zito A; Scammell TE; Saper CB; Lowell BB; Fuller PM; Arrigoni E
    Nat Commun; 2022 Jul; 13(1):4163. PubMed ID: 35851580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Function of Neuronal Circuits Linking Ventrolateral Preoptic Nucleus and Lateral Hypothalamic Area.
    Prokofeva K; Saito YC; Niwa Y; Mizuno S; Takahashi S; Hirano A; Sakurai T
    J Neurosci; 2023 May; 43(22):4075-4092. PubMed ID: 37117013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons.
    Saito YC; Tsujino N; Hasegawa E; Akashi K; Abe M; Mieda M; Sakimura K; Sakurai T
    Front Neural Circuits; 2013; 7():192. PubMed ID: 24348342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling.
    Diniz Behn CG; Kopell N; Brown EN; Mochizuki T; Scammell TE
    J Neurophysiol; 2008 Jun; 99(6):3090-103. PubMed ID: 18417630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area.
    Mavanji V; Perez-Leighton CE; Kotz CM; Billington CJ; Parthasarathy S; Sinton CM; Teske JA
    Sleep; 2015 Sep; 38(9):1361-70. PubMed ID: 25845696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons.
    Saito YC; Maejima T; Nishitani M; Hasegawa E; Yanagawa Y; Mieda M; Sakurai T
    J Neurosci; 2018 Jul; 38(28):6366-6378. PubMed ID: 29915137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orexin increases the neuronal excitability of several brain areas associated with maintaining of arousal.
    Chen XY; Yang W; Xue Y; Xie AM; Sun XR; Chen L
    J Neurochem; 2024 Sep; 168(9):2379-2390. PubMed ID: 39092633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation of GABAergic Neurons in the Bed Nucleus of the Stria Terminalis Triggers Immediate Transition from Non-Rapid Eye Movement Sleep to Wakefulness in Mice.
    Kodani S; Soya S; Sakurai T
    J Neurosci; 2017 Jul; 37(30):7164-7176. PubMed ID: 28642284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Inhibitory Lateral Hypothalamic-Preoptic Circuit Mediates Rapid Arousals from Sleep.
    Venner A; De Luca R; Sohn LT; Bandaru SS; Verstegen AMJ; Arrigoni E; Fuller PM
    Curr Biol; 2019 Dec; 29(24):4155-4168.e5. PubMed ID: 31761703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NAergic locus coeruleus-ventrolateral preoptic area neural circuit mediates rapid arousal from sleep.
    Liang Y; Shi W; Xiang A; Hu D; Wang L; Zhang L
    Curr Biol; 2021 Sep; 31(17):3729-3742.e5. PubMed ID: 34270948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel Arousal Pathways in the Lateral Hypothalamus.
    Heiss JE; Yamanaka A; Kilduff TS
    eNeuro; 2018; 5(4):. PubMed ID: 30225361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal.
    Williams RH; Chee MJ; Kroeger D; Ferrari LL; Maratos-Flier E; Scammell TE; Arrigoni E
    J Neurosci; 2014 Apr; 34(17):6023-9. PubMed ID: 24760861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A physiologically based model of orexinergic stabilization of sleep and wake.
    Fulcher BD; Phillips AJ; Postnova S; Robinson PA
    PLoS One; 2014; 9(3):e91982. PubMed ID: 24651580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underlying brain mechanisms that regulate sleep-wakefulness cycles.
    Gvilia I
    Int Rev Neurobiol; 2010; 93():1-21. PubMed ID: 20969999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain.
    Schöne C; Burdakov D
    Curr Top Behav Neurosci; 2017; 33():51-74. PubMed ID: 27830577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostatic, circadian, and emotional regulation of sleep.
    Saper CB; Cano G; Scammell TE
    J Comp Neurol; 2005 Dec; 493(1):92-8. PubMed ID: 16254994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasopressin neurons in the paraventricular hypothalamus promote wakefulness via lateral hypothalamic orexin neurons.
    Islam MT; Rumpf F; Tsuno Y; Kodani S; Sakurai T; Matsui A; Maejima T; Mieda M
    Curr Biol; 2022 Sep; 32(18):3871-3885.e4. PubMed ID: 35907397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle.
    Lee MG; Hassani OK; Jones BE
    J Neurosci; 2005 Jul; 25(28):6716-20. PubMed ID: 16014733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons.
    Briggs C; Hirasawa M; Semba K
    J Neurosci; 2018 Mar; 38(10):2505-2518. PubMed ID: 29431649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness.
    Tabuchi S; Tsunematsu T; Kilduff TS; Sugio S; Xu M; Tanaka KF; Takahashi S; Tominaga M; Yamanaka A
    Sleep; 2013 Sep; 36(9):1391-404. PubMed ID: 23997373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.