These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35851628)

  • 1. Involvement of isoproterenol-induced intracellular Zn
    Itoh R; Ishikawa Y; Tamano H; Takeda A
    Biometals; 2022 Oct; 35(5):1023-1031. PubMed ID: 35851628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoproterenol injected into the basolateral amygdala rescues amyloid β
    Ishikawa Y; Itoh R; Tsujimoto R; Tamano H; Takeda A
    Neurosci Lett; 2022 Jan; 766():136353. PubMed ID: 34793899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adrenergic β receptor activation in the basolateral amygdala, which is intracellular Zn
    Tamano H; Kubota M; Fujise Y; Shimaya R; Itoh R; Suzuki M; Adlard PA; Bush AI; Takeda A
    Neurochem Int; 2018 Nov; 120():43-48. PubMed ID: 30030113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of intracellular Zn
    Fujise Y; Kubota M; Suzuki M; Tamano H; Takeda A
    Neurochem Int; 2017 Sep; 108():1-6. PubMed ID: 28131899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influx of extracellular Zn(2+) into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation.
    Takeda A; Suzuki M; Tempaku M; Ohashi K; Tamano H
    Neuroscience; 2015 Sep; 304():209-16. PubMed ID: 26204819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.
    Takeda A; Tamano H; Ogawa T; Takada S; Nakamura M; Fujii H; Ando M
    Hippocampus; 2014 Nov; 24(11):1404-12. PubMed ID: 24978470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weakened Intracellular Zn
    Takeda A; Tamano H; Murakami T; Nakada H; Minamino T; Koike Y
    Mol Neurobiol; 2018 May; 55(5):3856-3865. PubMed ID: 28547527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenergic β receptor activation reduces amyloid β
    Tamano H; Ishikawa Y; Shioya A; Itoh R; Oneta N; Shimaya R; Egawa M; Adlard PA; Bush AI; Takeda A
    Neurotoxicology; 2020 Jul; 79():177-183. PubMed ID: 32512026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of intracellular Zn
    Tamano H; Nishio R; Takeda A
    Hippocampus; 2017 Jul; 27(7):777-783. PubMed ID: 28380662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid β
    Tamano H; Suzuki H; Murakami T; Fujii H; Adlard PA; Bush AI; Takeda A
    Mol Neurobiol; 2019 Jul; 56(7):5041-5050. PubMed ID: 30460616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of beta- and alpha-2-adrenoceptors in the basolateral amygdala has opposing effects on hippocampal-prefrontal long-term potentiation.
    Lim EP; Dawe GS; Jay TM
    Neurobiol Learn Mem; 2017 Jan; 137():163-170. PubMed ID: 27916533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of long-term and short-term plasticity in the dentate gyrus granule cells by activating the β-adrenergic receptors of the basolateral amygdala.
    Noorani SK; Hojati V; Ardeshiri MR; Akbari E; Ehsani S
    Neurosci Lett; 2020 Apr; 725():134878. PubMed ID: 32119942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAA receptor endocytosis in the basolateral amygdala is critical to the reinstatement of fear memory measured by fear-potentiated startle.
    Lin HC; Tseng YC; Mao SC; Chen PS; Gean PW
    J Neurosci; 2011 Jun; 31(24):8851-61. PubMed ID: 21677169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-adrenergic facilitation of synaptic plasticity in the rat basolateral amygdala in vitro is gradually reversed by corticosterone.
    Pu Z; Krugers HJ; Joëls M
    Learn Mem; 2009 Feb; 16(2):155-60. PubMed ID: 19196909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticosterone injection into the basolateral amygdala before and after memory reactivation impairs the subsequent expression of fear memory in rats: An interaction of glucocorticoids and β-adrenoceptors.
    Ali Vafaei A; Nazari M; Omoumi S; Rashidy-Pour A; Raise-Abdullahi P
    Neurobiol Learn Mem; 2023 Nov; 205():107829. PubMed ID: 37734437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats--a possible mechanism for the persistence of traumatic memories in PTSD.
    Dębiec J; Bush DE; LeDoux JE
    Depress Anxiety; 2011 Mar; 28(3):186-93. PubMed ID: 21394851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-Adrenergic enhancement of neuronal excitability in the lateral amygdala is developmentally gated.
    Fink AE; LeDoux JE
    J Neurophysiol; 2018 May; 119(5):1658-1664. PubMed ID: 29361666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress.
    Takeda A; Suzuki M; Tamano H; Takada S; Ide K; Oku N
    Neurochem Int; 2012 Mar; 60(4):394-9. PubMed ID: 22306774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of intracellular Zn2+ signaling in the dentate gyrus erases recognition memory via impairment of maintained LTP.
    Tamano H; Minamino T; Fujii H; Takada S; Nakamura M; Ando M; Takeda A
    Hippocampus; 2015 Aug; 25(8):952-62. PubMed ID: 25603776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippocampal long-term potentiation that is elicited by perforant path stimulation or that occurs in conjunction with spatial learning is tightly controlled by beta-adrenoreceptors and the locus coeruleus.
    Hansen N; Manahan-Vaughan D
    Hippocampus; 2015 Nov; 25(11):1285-98. PubMed ID: 25727388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.