These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 35851940)

  • 1. Plant synthetic epigenomic engineering for crop improvement.
    Yang L; Zhang P; Wang Y; Hu G; Guo W; Gu X; Pu L
    Sci China Life Sci; 2022 Nov; 65(11):2191-2204. PubMed ID: 35851940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospects and challenges of epigenomics in crop improvement.
    Huang Y; Liu Y; Liu C; Birchler JA; Han F
    Genes Genomics; 2022 Mar; 44(3):251-257. PubMed ID: 34837632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement.
    Agarwal G; Kudapa H; Ramalingam A; Choudhary D; Sinha P; Garg V; Singh VK; Patil GB; Pandey MK; Nguyen HT; Guo B; Sunkar R; Niederhuth CE; Varshney RK
    Funct Integr Genomics; 2020 Nov; 20(6):739-761. PubMed ID: 33089419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward synthetic plant development.
    Brophy JAN
    Plant Physiol; 2022 Feb; 188(2):738-748. PubMed ID: 34904660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing epigenetic variability for crop improvement: current status and future prospects.
    Kim EY; Kim KD; Cho J
    Genes Genomics; 2022 Mar; 44(3):259-266. PubMed ID: 34807374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenome and Epitranscriptome: Potential Resources for Crop Improvement.
    Hou Q; Wan X
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of epigenetic modifications in the development of crops essential traits.
    Wang YN; Xu T; Wang WP; Zhang QZ; Xie LN
    Yi Chuan; 2021 Sep; 43(9):858-879. PubMed ID: 34702699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting induced and natural epigenetic variation for crop improvement.
    Springer NM; Schmitz RJ
    Nat Rev Genet; 2017 Sep; 18(9):563-575. PubMed ID: 28669983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetics and crop improvement.
    Springer NM
    Trends Genet; 2013 Apr; 29(4):241-7. PubMed ID: 23128009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Improved Photosynthesis in the Era of Synthetic Biology.
    Batista-Silva W; da Fonseca-Pereira P; Martins AO; Zsögön A; Nunes-Nesi A; Araújo WL
    Plant Commun; 2020 Mar; 1(2):100032. PubMed ID: 33367233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.
    Shih PM; Liang Y; Loqué D
    Plant J; 2016 Jul; 87(1):103-17. PubMed ID: 27030440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops.
    Mladenov V; Fotopoulos V; Kaiserli E; Karalija E; Maury S; Baranek M; Segal N; Testillano PS; Vassileva V; Pinto G; Nagel M; Hoenicka H; Miladinović D; Gallusci P; Vergata C; Kapazoglou A; Abraham E; Tani E; Gerakari M; Sarri E; Avramidou E; Gašparović M; Martinelli F
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Synthetic Metabolic Engineering for Enhancing Crop Nutritional Quality.
    Zhu Q; Wang B; Tan J; Liu T; Li L; Liu YG
    Plant Commun; 2020 Jan; 1(1):100017. PubMed ID: 33404538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives.
    Singh D; Chaudhary P; Taunk J; Kumar Singh C; Sharma S; Singh VJ; Singh D; Chinnusamy V; Yadav R; Pal M
    J Exp Bot; 2021 Oct; 72(20):6836-6855. PubMed ID: 34302734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspectives for epigenetic editing in crops.
    Selma S; Orzáez D
    Transgenic Res; 2021 Aug; 30(4):381-400. PubMed ID: 33891288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenome guided crop improvement: current progress and future opportunities.
    Zhang Y; Andrews H; Eglitis-Sexton J; Godwin I; Tanurdžić M; Crisp PA
    Emerg Top Life Sci; 2022 Apr; 6(2):141-151. PubMed ID: 35072210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes.
    Mirouze M; Vitte C
    J Exp Bot; 2014 Jun; 65(10):2801-12. PubMed ID: 24744427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.