These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35852429)

  • 1. Deep Learning to Predict Neonatal and Infant Brain Age from Myelination on Brain MRI Scans.
    Chen JV; Chaudhari G; Hess CP; Glenn OA; Sugrue LP; Rauschecker AM; Li Y
    Radiology; 2022 Dec; 305(3):678-687. PubMed ID: 35852429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
    Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ
    Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning-based Identification of Brain MRI Sequences Using a Model Trained on Large Multicentric Study Cohorts.
    Mahmutoglu MA; Preetha CJ; Meredig H; Tonn JC; Weller M; Wick W; Bendszus M; Brugnara G; Vollmuth P
    Radiol Artif Intell; 2024 Jan; 6(1):e230095. PubMed ID: 38166331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automation of a Rule-based Workflow to Estimate Age from Brain MR Imaging of Infants and Children Up to 2 Years Old Using Stacked Deep Learning.
    Wada A; Saito Y; Fujita S; Irie R; Akashi T; Sano K; Kato S; Ikenouchi Y; Hagiwara A; Sato K; Tomizawa N; Hayakawa Y; Kikuta J; Kamagata K; Suzuki M; Hori M; Nakanishi A; Aoki S
    Magn Reson Med Sci; 2023 Jan; 22(1):57-66. PubMed ID: 34897147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer.
    Chung M; Calabrese E; Mongan J; Ray KM; Hayward JH; Kelil T; Sieberg R; Hylton N; Joe BN; Lee AY
    Radiology; 2023 Mar; 306(3):e213199. PubMed ID: 36378030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SyMRI detects delayed myelination in preterm neonates.
    Schmidbauer V; Geisl G; Diogo M; Weber M; Goeral K; Klebermass-Schrehof K; Berger A; Prayer D; Kasprian G
    Eur Radiol; 2019 Dec; 29(12):7063-7072. PubMed ID: 31286188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Brain Morphometry of Portable Low-Field-Strength MRI Using Super-Resolution Machine Learning.
    Iglesias JE; Schleicher R; Laguna S; Billot B; Schaefer P; McKaig B; Goldstein JN; Sheth KN; Rosen MS; Kimberly WT
    Radiology; 2023 Mar; 306(3):e220522. PubMed ID: 36346311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of brain age from routine T2-weighted spin-echo brain magnetic resonance images with a deep convolutional neural network.
    Hwang I; Yeon EK; Lee JY; Yoo RE; Kang KM; Yun TJ; Choi SH; Sohn CH; Kim H; Kim JH
    Neurobiol Aging; 2021 Sep; 105():78-85. PubMed ID: 34049061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-visible Perivascular Spaces in the Neonatal Brain.
    Kim JY; Nam Y; Kim S; Shin NY; Kim HG
    Radiology; 2023 Apr; 307(2):e221314. PubMed ID: 36648342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dosimetry-Driven Quality Measure of Brain Pseudo Computed Tomography Generated From Deep Learning for MRI-Only Radiation Therapy Treatment Planning.
    Alvarez Andres E; Fidon L; Vakalopoulou M; Lerousseau M; Carré A; Sun R; Klausner G; Ammari S; Benzazon N; Reuzé S; Estienne T; Niyoteka S; Battistella E; Rouyar A; Noël G; Beaudre A; Dhermain F; Deutsch E; Paragios N; Robert C
    Int J Radiat Oncol Biol Phys; 2020 Nov; 108(3):813-823. PubMed ID: 32417412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model.
    Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K
    Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A validated clinical MRI injury scoring system in neonatal hypoxic-ischemic encephalopathy.
    Trivedi SB; Vesoulis ZA; Rao R; Liao SM; Shimony JS; McKinstry RC; Mathur AM
    Pediatr Radiol; 2017 Oct; 47(11):1491-1499. PubMed ID: 28623417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate brain-age models for routine clinical MRI examinations.
    Wood DA; Kafiabadi S; Busaidi AA; Guilhem E; Montvila A; Lynch J; Townend M; Agarwal S; Mazumder A; Barker GJ; Ourselin S; Cole JH; Booth TC
    Neuroimage; 2022 Apr; 249():118871. PubMed ID: 34995797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.
    Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P
    Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early myelination patterns in the central auditory pathway of the higher brain: MRI evaluation study.
    Sano M; Kuan CC; Kaga K; Itoh K; Ino K; Mima K
    Int J Pediatr Otorhinolaryngol; 2008 Oct; 72(10):1479-86. PubMed ID: 18676030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI.
    Coll L; Pareto D; Carbonell-Mirabent P; Cobo-Calvo Á; Arrambide G; Vidal-Jordana Á; Comabella M; Castilló J; Rodríguez-Acevedo B; Zabalza A; Galán I; Midaglia L; Nos C; Salerno A; Auger C; Alberich M; Río J; Sastre-Garriga J; Oliver A; Montalban X; Rovira À; Tintoré M; Lladó X; Tur C
    Neuroimage Clin; 2023; 38():103376. PubMed ID: 36940621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.