BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 35852448)

  • 1. Enzyme Discovery in Anaerobic Fungi (Neocallimastigomycetes) Enables Lignocellulosic Biorefinery Innovation.
    Lankiewicz TS; Lillington SP; O'Malley MA
    Microbiol Mol Biol Rev; 2022 Dec; 86(4):e0004122. PubMed ID: 35852448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin deconstruction by anaerobic fungi.
    Lankiewicz TS; Choudhary H; Gao Y; Amer B; Lillington SP; Leggieri PA; Brown JL; Swift CL; Lipzen A; Na H; Amirebrahimi M; Theodorou MK; Baidoo EEK; Barry K; Grigoriev IV; Timokhin VI; Gladden J; Singh S; Mortimer JC; Ralph J; Simmons BA; Singer SW; O'Malley MA
    Nat Microbiol; 2023 Apr; 8(4):596-610. PubMed ID: 36894634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemicellulolytic enzymes in lignocellulose processing.
    Østby H; Várnai A
    Essays Biochem; 2023 Apr; 67(3):533-550. PubMed ID: 37068264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress in lignocellulose deconstruction by fungi].
    Tian C; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1333-9. PubMed ID: 21218619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of untreated lignocellulosic feedstock is independent of S-lignin composition in newly classified anaerobic fungal isolate,
    Hooker CA; Hillman ET; Overton JC; Ortiz-Velez A; Schacht M; Hunnicutt A; Mosier NS; Solomon KV
    Biotechnol Biofuels; 2018; 11():293. PubMed ID: 30386430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research.
    Saini S; Sharma KK
    Int J Biol Macromol; 2021 Dec; 193(Pt B):2304-2319. PubMed ID: 34800524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of fungal pretreatment processes for anaerobic digestion: Applications, bottlenecks and future needs.
    Kainthola J; Podder A; Fechner M; Goel R
    Bioresour Technol; 2021 Feb; 321():124397. PubMed ID: 33249324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and characterization of spore coat CotH kinases from the cellulosomes of anaerobic fungi (Neocallimastigomycetes).
    Lillington SP; Hamilton M; Cheng JF; Yoshikuni Y; O'Malley MA
    Protein Expr Purif; 2023 Oct; 210():106323. PubMed ID: 37331410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes.
    Peng X; Wilken SE; Lankiewicz TS; Gilmore SP; Brown JL; Henske JK; Swift CL; Salamov A; Barry K; Grigoriev IV; Theodorou MK; Valentine DL; O'Malley MA
    Nat Microbiol; 2021 Apr; 6(4):499-511. PubMed ID: 33526884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Genes Involved in the Degradation of Lignocellulose Using Comparative Transcriptomics.
    Gruninger RJ; Reid I; Forster RJ; Tsang A; McAllister TA
    Methods Mol Biol; 2017; 1588():279-298. PubMed ID: 28417376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of biofilms on the conversion of cellulose.
    Brethauer S; Shahab RL; Studer MH
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5201-5212. PubMed ID: 32337627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.
    van Kuijk SJA; Sonnenberg ASM; Baars JJP; Hendriks WH; Cone JW
    Biotechnol Adv; 2015; 33(1):191-202. PubMed ID: 25447421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.
    Dashtban M; Schraft H; Qin W
    Int J Biol Sci; 2009 Sep; 5(6):578-95. PubMed ID: 19774110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi.
    Tamilselvan R; Immanuel Selwynraj A
    Anaerobe; 2024 Feb; 85():102815. PubMed ID: 38145708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance.
    Paës G; Navarro D; Benoit Y; Blanquet S; Chabbert B; Chaussepied B; Coutinho PM; Durand S; Grigoriev IV; Haon M; Heux L; Launay C; Margeot A; Nishiyama Y; Raouche S; Rosso MN; Bonnin E; Berrin JG
    Biotechnol Biofuels; 2019; 12():76. PubMed ID: 30976326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.
    Gupta VK; Kubicek CP; Berrin JG; Wilson DW; Couturier M; Berlin A; Filho EXF; Ezeji T
    Trends Biochem Sci; 2016 Jul; 41(7):633-645. PubMed ID: 27211037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters.
    Seppälä S; Solomon KV; Gilmore SP; Henske JK; O'Malley MA
    Microb Cell Fact; 2016 Dec; 15(1):212. PubMed ID: 27998268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi.
    Goodell B; Zhu Y; Kim S; Kafle K; Eastwood D; Daniel G; Jellison J; Yoshida M; Groom L; Pingali SV; O'Neill H
    Biotechnol Biofuels; 2017; 10():179. PubMed ID: 28702084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic Fungi and Their Potential for Biogas Production.
    Dollhofer V; Podmirseg SM; Callaghan TM; Griffith GW; Fliegerová K
    Adv Biochem Eng Biotechnol; 2015; 151():41-61. PubMed ID: 26337843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the Lignocellulose-Degrading Enzyme System of
    Steindorff AS; Serra LA; Formighieri EF; de Faria FP; Poças-Fonseca MJ; de Almeida JRM
    Microbiol Spectr; 2021 Oct; 9(2):e0108821. PubMed ID: 34523973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.