BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 35852448)

  • 21. Identification of Genes Involved in the Degradation of Lignocellulose Using Comparative Transcriptomics.
    Gruninger RJ; Tsang A; McAllister TA
    Methods Mol Biol; 2023; 2657():285-304. PubMed ID: 37149538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leveraging multiomics approaches for producing lignocellulose degrading enzymes.
    Dashora K; Gattupalli M; Javed Z; Tripathi GD; Sharma R; Mishra M; Bhargava A; Srivastava S
    Cell Mol Life Sci; 2022 Feb; 79(2):132. PubMed ID: 35152331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nature's recyclers: anaerobic microbial communities drive crude biomass deconstruction.
    Lillington SP; Leggieri PA; Heom KA; O'Malley MA
    Curr Opin Biotechnol; 2020 Apr; 62():38-47. PubMed ID: 31593910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Community structure and succession regulation of fungal consortia in the lignocellulose-degrading process on natural biomass.
    Tian B; Wang C; Lv R; Zhou J; Li X; Zheng Y; Jin X; Wang M; Ye Y; Huang X; Liu P
    ScientificWorldJournal; 2014; 2014():845721. PubMed ID: 24574925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose.
    Henske JK; Wilken SE; Solomon KV; Smallwood CR; Shutthanandan V; Evans JE; Theodorou MK; O'Malley MA
    Biotechnol Bioeng; 2018 Apr; 115(4):874-884. PubMed ID: 29240224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium.
    Tomazetto G; Pimentel AC; Wibberg D; Dixon N; Squina FM
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast.
    Perli T; Vos AM; Bouwknegt J; Dekker WJC; Wiersma SJ; Mooiman C; Ortiz-Merino RA; Daran JM; Pronk JT
    mBio; 2021 Jun; 12(3):e0096721. PubMed ID: 34154398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression.
    Castaño JD; El Khoury IV; Goering J; Evans JE; Zhang J
    Appl Environ Microbiol; 2024 May; 90(5):e0012224. PubMed ID: 38567954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing.
    Wilhelm RC; Singh R; Eltis LD; Mohn WW
    ISME J; 2019 Feb; 13(2):413-429. PubMed ID: 30258172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures.
    Valadares F; Gonçalves TA; Damasio A; Milagres AM; Squina FM; Segato F; Ferraz A
    Enzyme Microb Technol; 2019 Nov; 130():109370. PubMed ID: 31421724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards efficient enzymatic saccharification of pretreated lignocellulose: Enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies.
    Zhai R; Hu J; Jin M
    Biotechnol Adv; 2022 Dec; 61():108044. PubMed ID: 36152893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic researches for lignocellulose-degrading enzymes: A mini-review.
    Guo H; Wang XD; Lee DJ
    Bioresour Technol; 2018 Oct; 265():532-541. PubMed ID: 29884341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production.
    Haitjema CH; Solomon KV; Henske JK; Theodorou MK; O'Malley MA
    Biotechnol Bioeng; 2014 Aug; 111(8):1471-82. PubMed ID: 24788404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lignocellulose deconstruction in the biosphere.
    Bomble YJ; Lin CY; Amore A; Wei H; Holwerda EK; Ciesielski PN; Donohoe BS; Decker SR; Lynd LR; Himmel ME
    Curr Opin Chem Biol; 2017 Dec; 41():61-70. PubMed ID: 29100023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown.
    Seppälä S; Wilken SE; Knop D; Solomon KV; O'Malley MA
    Metab Eng; 2017 Nov; 44():45-59. PubMed ID: 28943461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass.
    Ozbayram EG; Kleinsteuber S; Nikolausz M
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):489-508. PubMed ID: 31797006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biotechnological potential of anaerobic fungi on fiber degradation and methane production.
    Cheng Y; Shi Q; Sun R; Liang D; Li Y; Li Y; Jin W; Zhu W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):155. PubMed ID: 30276481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Fungal Secretome Adapted for Stress Enabled a Radical Wood Decay Mechanism.
    Castaño J; Zhang J; Zhou M; Tsai CF; Lee JY; Nicora C; Schilling J
    mBio; 2021 Aug; 12(4):e0204021. PubMed ID: 34399614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.