These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35852566)

  • 1. Interhemispheric inhibition is different during arm cycling than a position- and intensity-matched tonic contraction.
    Compton CT; Lockyer EJ; Benson RJ; Power KE
    Exp Brain Res; 2022 Sep; 240(9):2425-2434. PubMed ID: 35852566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D; Raj A; Button DC; Power KE
    J Neurophysiol; 2014 Sep; 112(5):1142-51. PubMed ID: 24899677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticospinal excitability, assessed through stimulus response curves, is phase-, task-, and muscle-dependent during arm cycling.
    Forman DA; Monks M; Power KE
    Neurosci Lett; 2019 Jan; 692():100-106. PubMed ID: 30399398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement.
    Forman DA; Philpott DT; Button DC; Power KE
    Exp Brain Res; 2016 Aug; 234(8):2339-49. PubMed ID: 27038204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-interval intracortical inhibition to the biceps brachii is present during arm cycling but is not different than a position- and intensity-matched tonic contraction.
    Alcock LR; Spence AJ; Lockyer EJ; Button DC; Power KE
    Exp Brain Res; 2019 Sep; 237(9):2145-2154. PubMed ID: 31203402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interhemispheric inhibition to the biceps brachii during arm cycling.
    Benson RJ; Lockyer EJ; Compton CT; Power KE
    Appl Physiol Nutr Metab; 2021 Feb; 46(2):186-189. PubMed ID: 33002389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity matters: effects of cadence and power output on corticospinal excitability during arm cycling are phase and muscle dependent.
    Lockyer EJ; Benson RJ; Hynes AP; Alcock LR; Spence AJ; Button DC; Power KE
    J Neurophysiol; 2018 Dec; 120(6):2908-2921. PubMed ID: 30354778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
    Chen R; Yung D; Li JY
    J Neurophysiol; 2003 Mar; 89(3):1256-64. PubMed ID: 12611955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling.
    Forman DA; Philpott DT; Button DC; Power KE
    J Neurophysiol; 2015 Oct; 114(4):2285-94. PubMed ID: 26289462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Premovement Changes in Corticospinal Excitability of the Biceps Brachii are Not Different Between Arm Cycling and an Intensity-Matched Tonic Contraction.
    Copithorne DB; Forman DA; Power KE
    Motor Control; 2015 Jul; 19(3):223-41. PubMed ID: 25387357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticospinal excitability to the biceps and triceps brachii during forward and backward arm cycling is direction- and phase-dependent.
    Nippard AP; Lockyer EJ; Button DC; Power KE
    Appl Physiol Nutr Metab; 2020 Jan; 45(1):72-80. PubMed ID: 31167082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in Corticospinal and Spinal Excitability to the Biceps Brachii with a Neutral vs. Pronated Handgrip Position Differ between Arm Cycling and Tonic Elbow Flexion.
    Forman DA; Richards M; Forman GN; Holmes MW; Power KE
    Front Hum Neurosci; 2016; 10():543. PubMed ID: 27826236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticospinal excitability of the biceps brachii is shoulder position dependent.
    Collins BW; Cadigan EWJ; Stefanelli L; Button DC
    J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of transcallosal inhibition by bilateral activation of agonist and antagonist proximal arm muscles.
    Perez MA; Butler JE; Taylor JL
    J Neurophysiol; 2014 Jan; 111(2):405-14. PubMed ID: 24155008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological changes underlying bilateral isometric arm voluntary contractions in healthy humans.
    Soteropoulos DS; Perez MA
    J Neurophysiol; 2011 Apr; 105(4):1594-602. PubMed ID: 21273315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticospinal excitability is lower during rhythmic arm movement than during tonic contraction.
    Carroll TJ; Baldwin ER; Collins DF; Zehr EP
    J Neurophysiol; 2006 Feb; 95(2):914-21. PubMed ID: 16251263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interhemispheric inhibition in distal and proximal arm representations in the primary motor cortex.
    Harris-Love ML; Perez MA; Chen R; Cohen LG
    J Neurophysiol; 2007 Mar; 97(3):2511-5. PubMed ID: 17215494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hysteresis in corticospinal excitability during gradual muscle contraction and relaxation in humans.
    Kimura T; Yamanaka K; Nozaki D; Nakazawa K; Miyoshi T; Akai M; Ohtsuki T
    Exp Brain Res; 2003 Sep; 152(1):123-32. PubMed ID: 12879181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.