These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35852968)
1. Multifunctional cellulosic materials prepared by a reactive DES based zero-waste system. Yang X; Abe K; Yano H; Wang L Nano Lett; 2022 Aug; 22(15):6128-6134. PubMed ID: 35852968 [TBL] [Abstract][Full Text] [Related]
2. Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Liu W; Du H; Liu K; Liu H; Xie H; Si C; Pang B; Zhang X Carbohydr Polym; 2021 Sep; 267():118220. PubMed ID: 34119174 [TBL] [Abstract][Full Text] [Related]
3. Insights into structure and properties of cellulose nanofibrils (CNFs) prepared by screw extrusion and deep eutectic solvent permeation. Yan M; Tian C; Wu T; Huang X; Zhong Y; Yang P; Zhang L; Ma J; Lu H; Zhou X Int J Biol Macromol; 2021 Nov; 191():422-431. PubMed ID: 34563572 [TBL] [Abstract][Full Text] [Related]
4. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Liu S; Zhang Q; Gou S; Zhang L; Wang Z Carbohydr Polym; 2021 Jan; 251():117018. PubMed ID: 33142579 [TBL] [Abstract][Full Text] [Related]
5. Cellulose nanofibers produced from spaghetti squash peel by deep eutectic solvents and ultrasonication. Wang S; Han H; Lei X; Ma J; Tao Z; Ren Y Int J Biol Macromol; 2024 Mar; 261(Pt 1):129777. PubMed ID: 38286364 [TBL] [Abstract][Full Text] [Related]
6. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
7. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties. Naidu DS; John MJ Int J Biol Macromol; 2021 May; 179():448-456. PubMed ID: 33711367 [TBL] [Abstract][Full Text] [Related]
8. Facile Preparation and Characteristic Analysis of Sulfated Cellulose Nanofibril via the Pretreatment of Sulfamic Acid-Glycerol Based Deep Eutectic Solvents. Li W; Xue Y; He M; Yan J; Lucia LA; Chen J; Yu J; Yang G Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835547 [TBL] [Abstract][Full Text] [Related]
9. Choline chloride - oxalic acid dihydrate deep eutectic solvent pretreatment of Barley straw for production of cellulose nanofibers. Pradhan D; Jaiswal S; Tiwari BK; Jaiswal AK Int J Biol Macromol; 2024 Nov; 281(Pt 2):136213. PubMed ID: 39368590 [TBL] [Abstract][Full Text] [Related]
10. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings. Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982 [TBL] [Abstract][Full Text] [Related]
11. Facile production of cellulose nanofibers from raw elephant grass by an aluminum chloride-enhanced acidic deep eutectic solvent. Yuan JC; Huang R; Jiang LY; Liu GD; Liu PD; Xu WR Int J Biol Macromol; 2023 Aug; 246():125687. PubMed ID: 37406902 [TBL] [Abstract][Full Text] [Related]
12. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils. Aimonen K; Imani M; Hartikainen M; Suhonen S; Vanhala E; Moreno C; Rojas OJ; Norppa H; Catalán J Part Fibre Toxicol; 2022 Mar; 19(1):19. PubMed ID: 35296350 [TBL] [Abstract][Full Text] [Related]
13. Reversible Surface Engineering of Cellulose Elementary Fibrils: From Ultralong Nanocelluloses to Advanced Cellulosic Materials. Zhou M; Chen D; Chen Q; Chen P; Song G; Chang C Adv Mater; 2024 May; 36(21):e2312220. PubMed ID: 38288877 [TBL] [Abstract][Full Text] [Related]
15. Emulsion Stabilization with Functionalized Cellulose Nanoparticles Fabricated Using Deep Eutectic Solvents. Ojala J; Visanko M; Laitinen O; Österberg M; Sirviö JA; Liimatainen H Molecules; 2018 Oct; 23(11):. PubMed ID: 30366392 [TBL] [Abstract][Full Text] [Related]
16. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper. Galland S; Berthold F; Prakobna K; Berglund LA Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837 [TBL] [Abstract][Full Text] [Related]
17. Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. Wang Q; Zhu JY; Considine JM ACS Appl Mater Interfaces; 2013 Apr; 5(7):2527-34. PubMed ID: 23473973 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268 [TBL] [Abstract][Full Text] [Related]
19. Polyphenol-induced cellulose nanofibrils anchored graphene oxide as nanohybrids for strong yet tough soy protein nanocomposites. Wang Z; Kang H; Zhao S; Zhang W; Zhang S; Li J Carbohydr Polym; 2018 Jan; 180():354-364. PubMed ID: 29103515 [TBL] [Abstract][Full Text] [Related]
20. Cellulose nanofibrils (CNFs) from Ammophila arenaria, a natural and a fast growing grass plant. Jebali Z; Nabili A; Majdoub H; Boufi S Int J Biol Macromol; 2018 Feb; 107(Pt A):530-536. PubMed ID: 28911807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]