These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35853220)

  • 1. On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application.
    Nikam RD; Lee J; Choi W; Kim D; Hwang H
    ACS Nano; 2022 Aug; 16(8):12214-12225. PubMed ID: 35853220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical random-access memory: recent advances in materials, devices, and systems towards neuromorphic computing.
    Kwak H; Kim N; Jeon S; Kim S; Woo J
    Nano Converg; 2024 Feb; 11(1):9. PubMed ID: 38416323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Cutting-Edge Frontiers of Electrochemical Random Access Memories (ECRAMs) for Neuromorphic Computing: Revolutionary Advances in Material-to-Device Engineering.
    Nikam RD; Lee J; Lee K; Hwang H
    Small; 2023 Oct; 19(40):e2302593. PubMed ID: 37300356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic Sieving Through One-Atom-Thick 2D Material Enables Analog Nonvolatile Memory for Neuromorphic Computing.
    Nikam RD; Lee J; Choi W; Banerjee W; Kwak M; Yadav M; Hwang H
    Small; 2021 Nov; 17(44):e2103543. PubMed ID: 34596963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies to Improve the Synaptic Characteristics of Oxygen-Based Electrochemical Random-Access Memory Based on Material Parameters Optimization.
    Lee J; Nikam RD; Kwak M; Hwang H
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13450-13457. PubMed ID: 35257578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-Driven Electrochemical Random-Access Memory-Based Synaptic Devices for Neuromorphic Computing Systems: A Mini-Review.
    Kang H; Seo J; Kim H; Kim HW; Hong ER; Kim N; Lee D; Woo J
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ECRAM Materials, Devices, Circuits and Architectures: A Perspective.
    Talin AA; Li Y; Robinson DA; Fuller EJ; Kumar S
    Adv Mater; 2023 Sep; 35(37):e2204771. PubMed ID: 36354177
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Li Y; Xiao TP; Bennett CH; Isele E; Melianas A; Tao H; Marinella MJ; Salleo A; Fuller EJ; Talin AA
    Front Neurosci; 2021; 15():636127. PubMed ID: 33897351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multi-bit ECRAM-Based Analog Neuromorphic System with High-Precision Current Readout Achieving 97.3% Inference Accuracy.
    Um M; Kang M; Eom K; Kwak H; Noh K; Lee J; Son J; Kwon J; Kim S; Lee HM
    IEEE Trans Biomed Circuits Syst; 2024 Sep; PP():. PubMed ID: 39312419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Neuron and Synapse Devices Based on 2D Materials.
    Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J
    Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RRAM-based synapse devices for neuromorphic systems.
    Moon K; Lim S; Park J; Sung C; Oh S; Woo J; Lee J; Hwang H
    Faraday Discuss; 2019 Feb; 213(0):421-451. PubMed ID: 30426118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing.
    Sharbati MT; Du Y; Torres J; Ardolino ND; Yun M; Xiong F
    Adv Mater; 2018 Jul; ():e1802353. PubMed ID: 30033599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention-aware zero-shifting technique for Tiki-Taka algorithm-based analog deep learning accelerator.
    Noh K; Kwak H; Son J; Kim S; Um M; Kang M; Kim D; Ji W; Lee J; Jo H; Woo J; Lee HM; Kim S
    Sci Adv; 2024 Jun; 10(24):eadl3350. PubMed ID: 38875324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing.
    Kireev D; Liu S; Jin H; Patrick Xiao T; Bennett CH; Akinwande D; Incorvia JAC
    Nat Commun; 2022 Jul; 13(1):4386. PubMed ID: 35902599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory artificial synapses based on photoelectric co-modulation of graphene/WSe
    Zhou Y; Zhang P; Li J; Mao X
    Nanotechnology; 2023 Oct; 34(50):. PubMed ID: 37689056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biopolymer based artificial synapses enable linear conductance tuning and low-power for neuromorphic computing.
    Zhang K; Xue Q; Zhou C; Mo W; Chen CC; Li M; Hang T
    Nanoscale; 2022 Sep; 14(35):12898-12908. PubMed ID: 36040454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing.
    Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromorphic chip integrated with a large-scale integration circuit and amorphous-metal-oxide semiconductor thin-film synapse devices.
    Kimura M; Shibayama Y; Nakashima Y
    Sci Rep; 2022 Mar; 12(1):5359. PubMed ID: 35354900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition.
    Xue S; Wang S; Wu T; Di Z; Xu N; Sun Y; Zeng C; Ma S; Zhou P
    Sci Bull (Beijing); 2023 Oct; 68(20):2336-2343. PubMed ID: 37714804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Electrochemical-Electret Coupled Organic Synapse with Single-Polarity Driven Reversible Facilitation-to-Depression Switching.
    Wang H; Chen Y; Ni Z; Samorì P
    Adv Mater; 2022 Dec; 34(50):e2205945. PubMed ID: 36201378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.