These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 35853252)

  • 1. Adaptive compressed sensing algorithm for terahertz spectral image reconstruction based on residual learning.
    Jiang Y; Li G; Ge H; Wang F; Li L; Chen X; Lv M; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121586. PubMed ID: 35853252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain.
    Ouchi S; Ito S
    Magn Reson Med Sci; 2021 Jun; 20(2):190-203. PubMed ID: 32611937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressed sensing pulse-echo mode terahertz reflectance tomography.
    Jin KH; Kim Y; Yee DS; Lee OK; Ye JC
    Opt Lett; 2009 Dec; 34(24):3863-5. PubMed ID: 20016639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex "zero-shot" super-resolution reconstruction algorithm for THz imaging.
    Wang Y; Qi F; Wang J
    Appl Opt; 2022 Jul; 61(20):5831-5837. PubMed ID: 36255819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-domain terahertz compressive imaging.
    Zanotto L; Piccoli R; Dong J; Caraffini D; Morandotti R; Razzari L
    Opt Express; 2020 Feb; 28(3):3795-3802. PubMed ID: 32122041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient sub-pixel convolutional neural network for terahertz image super-resolution.
    Ruan H; Tan Z; Chen L; Wan W; Cao J
    Opt Lett; 2022 Jun; 47(12):3115-3118. PubMed ID: 35709064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography.
    Yu Z; Leng S; Li Z; McCollough CH
    Phys Med Biol; 2016 Sep; 61(18):6707-6732. PubMed ID: 27551878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive-size dictionary learning using information theoretic criteria for image reconstruction from undersampled k-space data in low field magnetic resonance imaging.
    Ahishakiye E; Van Gijzen MB; Tumwiine J; Obungoloch J
    BMC Med Imaging; 2020 Jun; 20(1):72. PubMed ID: 32600272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-dose spectral CT reconstruction based on image-gradient L
    Wang S; Wu W; Feng J; Liu F; Yu H
    Phys Med Biol; 2020 Dec; 65(24):245005. PubMed ID: 32693399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defect Detection of Composite Material Terahertz Image Based on Faster Region-Convolutional Neural Networks.
    Yang X; Liu P; Wang S; Wu B; Zhang K; Yang B; Wu X
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IKWI-net: A cross-domain convolutional neural network for undersampled magnetic resonance image reconstruction.
    Wang Z; Jiang H; Du H; Xu J; Qiu B
    Magn Reson Imaging; 2020 Nov; 73():1-10. PubMed ID: 32730848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. J-Net: Improved U-Net for Terahertz Image Super-Resolution.
    Yeo WH; Jung SH; Oh SJ; Maeng I; Lee ES; Ryu HC
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient Light-weight Network for Fast Reconstruction on MR Images.
    Zhen B; Zheng Y; Qiu B
    Curr Med Imaging; 2021; 17(11):1374-1384. PubMed ID: 33459243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Domain Terahertz Image Reconstruction Based on Dual Sparsity Constraints.
    Ren X; Jiang Y
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction.
    Zhang Y; Wang Y; Zhang C
    Ultrasonics; 2012 Dec; 52(8):1046-55. PubMed ID: 22986153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention.
    Hou Z; Cha X; An H; Zhang A; Lai D
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual U-Net residual networks for cardiac magnetic resonance images super-resolution.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2022 May; 218():106707. PubMed ID: 35255374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction.
    Njeh I; Mzoughi H; Ben Slima M; Ben Hamida A; Mhiri C; Ben Mahfoudh K
    Med Biol Eng Comput; 2021 Jan; 59(1):85-106. PubMed ID: 33231848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Grouping Distributed Compressive Sensing Reconstruction of Plant Hyperspectral Data.
    Xu P; Liu J; Xue L; Zhang J; Qiu B
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Step adaptive fast iterative shrinkage thresholding algorithm for compressively sampled MR imaging reconstruction.
    Wang W; Cao N
    Magn Reson Imaging; 2018 Nov; 53():89-97. PubMed ID: 29886107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.