These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35853459)

  • 1. Low-Temperature High-Areal-Capacity Rechargeable Potassium-Metal Batteries.
    Chen J; Yu D; Zhu Q; Liu X; Wang J; Chen W; Ji R; Qiu K; Guo L; Wang H
    Adv Mater; 2022 Sep; 34(36):e2205678. PubMed ID: 35853459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature and Fast-Charge Sodium Metal Batteries.
    Yu D; Wang Z; Yang J; Wang Y; Li Y; Zhu Q; Tu X; Chen D; Liang J; Khalilov U; Wang H
    Small; 2024 Jul; 20(30):e2311810. PubMed ID: 38385819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Tellurium-Boosted High-Areal-Capacity Zinc-Sulfur Battery.
    Zhang Y; Amardeep A; Wu Z; Tao L; Xu J; Freschi DJ; Liu J
    Adv Sci (Weinh); 2024 Jun; 11(23):e2308580. PubMed ID: 38566441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Potassium Storage Performance for K-Te Batteries
    Zhang Y; Liu C; Wu Z; Manaig D; Freschi DJ; Wang Z; Liu J
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16345-16354. PubMed ID: 33787196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tellurium: A High-Volumetric-Capacity Potassium-Ion Battery Electrode Material.
    Dong S; Yu D; Yang J; Jiang L; Wang J; Cheng L; Zhou Y; Yue H; Wang H; Guo L
    Adv Mater; 2020 Jun; 32(23):e1908027. PubMed ID: 32350944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity.
    Zhong J; Wang T; Wang L; Peng L; Fu S; Zhang M; Cao J; Xu X; Liang J; Fei H; Duan X; Lu B; Wang Y; Zhu J; Duan X
    Nanomicro Lett; 2022 Jan; 14(1):50. PubMed ID: 35076763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binder-free Cu-supported Ag nanowires for aqueous rechargeable silver-zinc batteries with ultrahigh areal capacity.
    Zhang Y; Li X; Cheng Y; Tan W; Huang X
    J Colloid Interface Sci; 2021 Mar; 586():47-55. PubMed ID: 33162035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries.
    Wang B; Ryu J; Choi S; Song G; Hong D; Hwang C; Chen X; Wang B; Li W; Song HK; Park S; Ruoff RS
    ACS Nano; 2018 Feb; 12(2):1739-1746. PubMed ID: 29350526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture.
    Li C; Zhu L; Qi S; Ge W; Ma W; Zhao Y; Huang R; Xu L; Qian Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49607-49616. PubMed ID: 33104326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Few-Layer Bismuthene with Anisotropic Expansion for High-Areal-Capacity Sodium-Ion Batteries.
    Zhou J; Chen J; Chen M; Wang J; Liu X; Wei B; Wang Z; Li J; Gu L; Zhang Q; Wang H; Guo L
    Adv Mater; 2019 Mar; 31(12):e1807874. PubMed ID: 30714223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-phase 1T/2H-WS
    Mu Z; Gao S; Huo S; Zhao K
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):823-832. PubMed ID: 36279841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Potassium-Tellurium Batteries Stabilized by Interface Engineering.
    Zhang Y; Zhu H; Freschi DJ; Liu J
    Small; 2022 Apr; 18(15):e2200085. PubMed ID: 35225427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface Engineering of Aqueous Zinc/Manganese Dioxide Batteries with High Areal Capacity and Energy Density.
    Shen Z; Liu Y; Luo L; Pu J; Ji Y; Xie J; Li L; Li C; Yao Y; Hong G
    Small; 2022 Dec; 18(50):e2204683. PubMed ID: 36310129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathick GeP Anode To Balance the Extreme Load and Compliance for High Areal Capacity Flexible Sodium-Ion Batteries.
    Zeng T; Yu H; Luo D; Guan H; He H; Zhang C
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55779-55789. PubMed ID: 37991386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-Thick Electrodes with Enhanced Transport Kinetics via In Situ Epitaxial Heterogeneous Interfaces for High Areal-Capacity Lithium Ion Batteries.
    Zhou S; Huang P; Xiong T; Yang F; Yang H; Huang Y; Li D; Deng J; Balogun MJT
    Small; 2021 Jul; 17(26):e2100778. PubMed ID: 34060232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Tortuous, Highly Conductive, and High-Areal-Capacity Battery Electrodes Enabled by Through-thickness Aligned Carbon Fiber Framework.
    Shi B; Shang Y; Pei Y; Pei S; Wang L; Heider D; Zhao YY; Zheng C; Yang B; Yarlagadda S; Chou TW; Fu KK
    Nano Lett; 2020 Jul; 20(7):5504-5512. PubMed ID: 32551672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-high Areal Capacity Realized in Three-Dimensional Holey Graphene/SnO
    Liang J; Sun H; Zhao Z; Wang Y; Feng Z; Zhu J; Guo L; Huang Y; Duan X
    iScience; 2019 Sep; 19():728-736. PubMed ID: 31476619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Cu Film Enables Thick Slurry-Cast Anodes with Enhanced Charge Transfer Efficiency for High-Performance Li-Ion Batteries.
    Ren Z; Huang L; Lin Z; Mu Y; Ji X; Zeng J; Yu J
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47623-47633. PubMed ID: 33047606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.