These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35854321)

  • 1. Effects of ATLAS 2030 gait exoskeleton on strength and range of motion in children with spinal muscular atrophy II: a case series.
    Cumplido-Trasmonte C; Ramos-Rojas J; Delgado-Castillejo E; Garcés-Castellote E; Puyuelo-Quintana G; Destarac-Eguizabal MA; Barquín-Santos E; Plaza-Flores A; Hernández-Melero M; Gutiérrez-Ayala A; Martínez-Moreno M; García-Armada E
    J Neuroeng Rehabil; 2022 Jul; 19(1):75. PubMed ID: 35854321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATLAS2030 Pediatric Gait Exoskeleton: Changes on Range of Motion, Strength and Spasticity in Children With Cerebral Palsy. A Case Series Study.
    Delgado E; Cumplido C; Ramos J; Garcés E; Puyuelo G; Plaza A; Hernández M; Gutiérrez A; Taverner T; Destarac MA; Martínez M; García E
    Front Pediatr; 2021; 9():753226. PubMed ID: 34900862
    [No Abstract]   [Full Text] [Related]  

  • 3. Gait-assisted exoskeletons for children with cerebral palsy or spinal muscular atrophy: A systematic review.
    Cumplido C; Delgado E; Ramos J; Puyuelo G; Garcés E; Destarac MA; Plaza A; Hernández M; Gutiérrez A; García E
    NeuroRehabilitation; 2021; 49(3):333-348. PubMed ID: 34219676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a robotic exoskeleton at home: An activity tolerance case study of a child with spinal muscular atrophy.
    Garces E; Puyuelo G; Sánchez-Iglesias I; Francisco Del Rey JC; Cumplido C; Destarac M; Plaza A; Hernández M; Delgado E; Garcia E
    J Pediatr Nurs; 2022; 67():e71-e78. PubMed ID: 36192285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Robotic Exoskeleton-Aided Gait Training in the Strength, Body Balance, and Walking Speed in Individuals With Multiple Sclerosis: A Single-Group Preliminary Study.
    Drużbicki M; Guzik A; Przysada G; Phd LP; Brzozowska-Magoń A; Cygoń K; Boczula G; Bartosik-Psujek H
    Arch Phys Med Rehabil; 2021 Feb; 102(2):175-184. PubMed ID: 33181115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knee Strength and Ankle Range of Motion Impacts on Timed Function Tests in Duchenne Muscular Dystrophy: In the Era of Glucocorticoids.
    Duong T; Canbek J; Fernandez-Fernandez A; Henricson E; Birkmeier M; Siener C; Tesi Rocha C; McDonald C; Gordish-Dressman H;
    J Neuromuscul Dis; 2022; 9(1):147-159. PubMed ID: 34719507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training with Hybrid Assistive Limb for walking function after total knee arthroplasty.
    Yoshikawa K; Mutsuzaki H; Sano A; Koseki K; Fukaya T; Mizukami M; Yamazaki M
    J Orthop Surg Res; 2018 Jul; 13(1):163. PubMed ID: 29970139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking.
    Attias M; Bonnefoy-Mazure A; De Coulon G; Cheze L; Armand S
    Gait Posture; 2016 Oct; 50():239-245. PubMed ID: 27665088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Electromechanical Exoskeleton-Assisted Gait Training on Walking Ability of Stroke Patients: A Randomized Controlled Trial.
    Nam YG; Lee JW; Park JW; Lee HJ; Nam KY; Park JH; Yu CS; Choi MR; Kwon BS
    Arch Phys Med Rehabil; 2019 Jan; 100(1):26-31. PubMed ID: 30055163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility and effectiveness of a novel dynamic arm support in persons with spinal muscular atrophy and duchenne muscular dystrophy.
    Janssen MMHP; Horstik J; Klap P; de Groot IJM
    J Neuroeng Rehabil; 2021 May; 18(1):84. PubMed ID: 34020668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.
    Chang SR; Nandor MJ; Li L; Kobetic R; Foglyano KM; Schnellenberger JR; Audu ML; Pinault G; Quinn RD; Triolo RJ
    J Neuroeng Rehabil; 2017 May; 14(1):48. PubMed ID: 28558835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training-Induced Muscle Fatigue with a Powered Lower-Limb Exoskeleton: A Preliminary Study on Healthy Subjects.
    Baptista R; Salvaggio F; Cavallo C; Pizzocaro S; Galasso S; Schmid M; De Nunzio AM
    Med Sci (Basel); 2022 Sep; 10(4):. PubMed ID: 36278525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects.
    Tamburella F; Tagliamonte NL; Masciullo M; Pisotta I; Arquilla M; van Asseldonk EHF; van der Kooij H; Wu AR; Dzeladini F; Ijspeert AJ; Molinari M
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):147-164. Technology in Medicine. PubMed ID: 33386045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination.
    Zhu F; Kern M; Fowkes E; Afzal T; Contreras-Vidal JL; Francisco GE; Chang SH
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 33752175
    [No Abstract]   [Full Text] [Related]  

  • 17. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.
    Mazzoleni S; Battini E; Rustici A; Stampacchia G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of multilevel joint contractures of the hips, knees and ankles on the Gait Profile score in children with cerebral palsy.
    Holmes SJ; Mudge AJ; Wojciechowski EA; Axt MW; Burns J
    Clin Biomech (Bristol, Avon); 2018 Nov; 59():8-14. PubMed ID: 30099242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A case of spinal and bulbar muscular atrophy with improved walking ability following gait training using the hybrid assistive limb (HAL)].
    Mizui D; Nakai Y; Okada H; Kanai M; Yamaguchi K
    Rinsho Shinkeigaku; 2019 Mar; 59(3):157-159. PubMed ID: 30814446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.