BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35854349)

  • 1. Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution.
    Gan Y; Bai M; Lin X; Liu K; Huang B; Jiang X; Liu Y; Gao C
    Microb Cell Fact; 2022 Jul; 21(1):147. PubMed ID: 35854349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV-ARTP compound mutagenesis breeding improves macrolactins production of Bacillus siamensis and reveals metabolism changes by proteomic.
    Yu L; Li F; Ni J; Qin X; Lai J; Su X; Li Z; Zhang M
    J Biotechnol; 2024 Feb; 381():36-48. PubMed ID: 38190850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid improvement in the macrolactins production of Bacillus sp. combining atmospheric room temperature plasma with the specific growth rate index.
    Yi X; Gan Y; Jiang L; Yu L; Liu Y; Gao C
    J Biosci Bioeng; 2020 Jul; 130(1):48-53. PubMed ID: 32224010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive laboratory evolution of β-caryophyllene producing Saccharomyces cerevisiae.
    Godara A; Kao KC
    Microb Cell Fact; 2021 May; 20(1):106. PubMed ID: 34044821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-intensity ultrasound-assisted adaptive laboratory evolution of Bacillus velezensis for enhanced production of peptides.
    Ruan S; Li Y; Lu F; Liu X; Zhou A; Ma H
    Ultrason Sonochem; 2024 Feb; 103():106805. PubMed ID: 38354424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.
    Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS
    J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel macrolactins as antibiotic lactones from a marine bacterium.
    Nagao T; Adachi K; Sakai M; Nishijima M; Sano H
    J Antibiot (Tokyo); 2001 Apr; 54(4):333-9. PubMed ID: 11426657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli.
    Wang X; Li Q; Sun C; Cai Z; Zheng X; Guo X; Ni X; Zhou W; Guo Y; Zheng P; Chen N; Sun J; Li Y; Ma Y
    Microb Cell Fact; 2019 Jun; 18(1):106. PubMed ID: 31186003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by
    Liang S; Jiang W; Song Y; Zhou SF
    J Agric Food Chem; 2020 Jul; 68(29):7660-7669. PubMed ID: 32603099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification and characterization of macrolide glycosyltransferases from a marine-derived Bacillus strain and their phylogenetic distribution.
    Liu Y; Qin W; Liu Q; Zhang J; Li H; Xu S; Ren P; Tian L; Li W
    Environ Microbiol; 2016 Dec; 18(12):4770-4781. PubMed ID: 27130432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.
    Tao X; Zheng D; Liu T; Wang P; Zhao W; Zhu M; Jiang X; Zhao Y; Wu X
    PLoS One; 2012; 7(2):e31235. PubMed ID: 22363590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.
    Chen S; Xu Y
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1940-54. PubMed ID: 24879599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of adaptive laboratory evolution to overcome a flux limitation in an Escherichia coli production strain.
    Tokuyama K; Toya Y; Horinouchi T; Furusawa C; Matsuda F; Shimizu H
    Biotechnol Bioeng; 2018 Jun; 115(6):1542-1551. PubMed ID: 29457640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine.
    Jiang LY; Chen SG; Zhang YY; Liu JZ
    BMC Biotechnol; 2013 Jun; 13():47. PubMed ID: 23725060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of FK506 production via metabolic engineering-guided combinational strategies in Streptomyces tsukubaensis.
    Wu QB; Zhang XY; Chen XA; Li YQ
    Microb Cell Fact; 2021 Aug; 20(1):166. PubMed ID: 34425854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering.
    Feng J; Gu Y; Quan Y; Cao M; Gao W; Zhang W; Wang S; Yang C; Song C
    Metab Eng; 2015 Nov; 32():106-115. PubMed ID: 26410449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH; Kwon EY; Kim YH; Hahn JS
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative metabolomics analysis of amphotericin B high-yield mechanism for metabolic engineering.
    Zhang B; Chen Y; Jiang SX; Cai X; Huang K; Liu ZQ; Zheng YG
    Microb Cell Fact; 2021 Mar; 20(1):66. PubMed ID: 33750383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.