These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35854443)
1. Hypoxia-Responsive Molecular Probe Lighted up by Peptide Self-Assembly for Cancer Cell Imaging. Ai S; Dong W; Li J; Yang Z J Biomed Nanotechnol; 2022 Apr; 18(4):1019-1027. PubMed ID: 35854443 [TBL] [Abstract][Full Text] [Related]
2. Peptide-Induced AIEgen Self-Assembly: A New Strategy to Realize Highly Sensitive Fluorescent Light-Up Probes. Han A; Wang H; Kwok RT; Ji S; Li J; Kong D; Tang BZ; Liu B; Yang Z; Ding D Anal Chem; 2016 Apr; 88(7):3872-8. PubMed ID: 26948051 [TBL] [Abstract][Full Text] [Related]
3. An activatable azophenyl fluorescent probe for hypoxic fluorescence imaging in living cells. Liu Z; Zhang Z; Li J; Zhu G; Li Q Luminescence; 2024 Jun; 39(6):e4798. PubMed ID: 38825785 [TBL] [Abstract][Full Text] [Related]
4. Modularized supramolecular assemblies for hypoxia-activatable fluorescent visualization and image-guided theranostics. Liu W; Wang B; Guo B; Zhu J; Xu Z; Xu J; Wang Z; Sun G; Wang W; Zhang Y; Xue W Theranostics; 2024; 14(9):3634-3652. PubMed ID: 38948059 [No Abstract] [Full Text] [Related]
5. Hypoxia-Triggered In Situ Self-Assembly of a Charge Switchable Azo Polymer with AIEgens for Tumor Imaging. Shen J; Shao K; Zhang W; He Y ACS Macro Lett; 2021 Jun; 10(6):702-707. PubMed ID: 35549096 [TBL] [Abstract][Full Text] [Related]
6. Tetraphenylethylene conjugated with a specific peptide as a fluorescence turn-on bioprobe for the highly specific detection and tracing of tumor markers in live cancer cells. Huang Y; Hu F; Zhao R; Zhang G; Yang H; Zhang D Chemistry; 2014 Jan; 20(1):158-64. PubMed ID: 24516888 [TBL] [Abstract][Full Text] [Related]
7. Noncanonical Amino Acids for Hypoxia-Responsive Peptide Self-Assembly and Fluorescence. Hu B; Song N; Cao Y; Li M; Liu X; Zhou Z; Shi L; Yu Z J Am Chem Soc; 2021 Sep; 143(34):13854-13864. PubMed ID: 34410694 [TBL] [Abstract][Full Text] [Related]
8. Strategies for Tumor Hypoxia Imaging Based on Aggregation-Induced Emission Fluorogens. Xue T; Shen J; Shao K; Wang W; Wu B; He Y Chemistry; 2020 Feb; 26(12):2521-2528. PubMed ID: 31692097 [TBL] [Abstract][Full Text] [Related]
9. Design and Engineering of Hypoxia and Acidic pH Dual-Stimuli-Responsive Intelligent Fluorescent Nanoprobe for Precise Tumor Imaging. Chen S; Chen M; Yang J; Zeng X; Zhou Y; Yang S; Yang R; Yuan Q; Zheng J Small; 2021 Jul; 17(28):e2100243. PubMed ID: 34117822 [TBL] [Abstract][Full Text] [Related]
10. Hypoxia-Activated Fluorescent Probe Based on Self-Immolative Block Copolymer. Shao K; Zhang W; Shen J; He Y Macromol Biosci; 2022 Mar; 22(3):e2100417. PubMed ID: 34981893 [TBL] [Abstract][Full Text] [Related]
11. Multifunctional Programmable DNA Nanotrain for Activatable Hypoxia Imaging and Mitochondrion-Targeted Enhanced Photodynamic Therapy. Liu J; Ding G; Chen S; Xue C; Chen M; Wu X; Yuan Q; Zheng J; Yang R ACS Appl Mater Interfaces; 2021 Mar; 13(8):9681-9690. PubMed ID: 33606499 [TBL] [Abstract][Full Text] [Related]
12. "Turn-On" Activatable AIE Dots for Tumor Hypoxia Imaging. Xue T; Jia X; Wang J; Xiang J; Wang W; Du J; He Y Chemistry; 2019 Jul; 25(41):9634-9638. PubMed ID: 31165531 [TBL] [Abstract][Full Text] [Related]
13. Development of a hypoxia-activated red-emission fluorescent probe for in vivo tumor microenvironment imaging and anti-tumor therapy. Jin C; Wu P; Tu M; Zhu HL; Li Z Mikrochim Acta; 2024 Mar; 191(4):217. PubMed ID: 38519619 [TBL] [Abstract][Full Text] [Related]
14. Progress in the past five years of small organic molecule dyes for tumor microenvironment imaging. Li S; Huo F; Yin C Chem Commun (Camb); 2022 Nov; 58(91):12642-12652. PubMed ID: 36314590 [TBL] [Abstract][Full Text] [Related]
15. Precisely Traceable Drug Delivery of Azoreductase-Responsive Prodrug for Colon Targeting via Multimodal Imaging. Zhao XB; Ha W; Gao K; Shi YP Anal Chem; 2020 Jul; 92(13):9039-9047. PubMed ID: 32501673 [TBL] [Abstract][Full Text] [Related]
16. Fluorogen-peptide conjugates with tunable aggregation-induced emission characteristics for bioprobe design. Zhang R; Yuan Y; Liang J; Kwok RT; Zhu Q; Feng G; Geng J; Tang BZ; Liu B ACS Appl Mater Interfaces; 2014 Aug; 6(16):14302-10. PubMed ID: 25089639 [TBL] [Abstract][Full Text] [Related]
17. Azo-Based Hypoxia-Responsive Self-Assembly Near-Infrared Fluorescent Nanoprobe for In Vivo Real-Time Bioimaging of Tumors. Liu W; Yao X; Zhu W; Wang J; Zhou F; Qian X; Tiemuer A; Yang S; Wang HY; Liu Y ACS Appl Bio Mater; 2021 Mar; 4(3):2752-2758. PubMed ID: 35014314 [TBL] [Abstract][Full Text] [Related]
18. In situ construction of a self-assembled AIE probe for tumor hypoxia imaging. Xue T; Shao K; Xiang J; Pan X; Zhu Z; He Y Nanoscale; 2020 Apr; 12(14):7509-7513. PubMed ID: 32227022 [TBL] [Abstract][Full Text] [Related]
19. Noncovalent Dual-Locked Near-Infrared Fluorescent Probe for Precise Imaging of Tumor via Hypoxia/Glutathione Activation. Zhao XB; Kang JY; Shi YP Anal Chem; 2022 May; 94(17):6574-6581. PubMed ID: 35437984 [TBL] [Abstract][Full Text] [Related]
20. Bioprobes based on AIE fluorogens. Ding D; Li K; Liu B; Tang BZ Acc Chem Res; 2013 Nov; 46(11):2441-53. PubMed ID: 23742638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]