These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35854594)

  • 1. Electroviscous drag on squeezing motion in sphere-plane geometry.
    Rodríguez Matus M; Zhang Z; Benrahla Z; Majee A; Maali A; Würger A
    Phys Rev E; 2022 Jun; 105(6-1):064606. PubMed ID: 35854594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroviscous cylinder-wall interactions.
    Tabatabaei SM; van de Ven TG; Rey AD
    J Colloid Interface Sci; 2006 Mar; 295(2):504-19. PubMed ID: 16376362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroviscous effect for a confined nanosphere in solution.
    Behjatian A; Bespalova M; Karedla N; Krishnan M
    Phys Rev E; 2020 Oct; 102(4-1):042607. PubMed ID: 33212723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroviscous sphere-wall interactions.
    Tabatabaei SM; van de Ven TG; Rey AD
    J Colloid Interface Sci; 2006 Sep; 301(1):291-301. PubMed ID: 16765371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroviscous Dissipation in Aqueous Electrolyte Films with Overlapping Electric Double Layers.
    Liu F; Klaassen A; Zhao C; Mugele F; van den Ende D
    J Phys Chem B; 2018 Jan; 122(2):933-946. PubMed ID: 28976197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroviscous effect of concentrated suspensions in salt-free media: water dissociation and CO2 influence.
    Ruiz-Reina E; Carrique F
    J Colloid Interface Sci; 2010 May; 345(2):538-46. PubMed ID: 20231023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroviscous effect on fluid drag in a microchannel with large zeta potential.
    Jing D; Bhushan B
    Beilstein J Nanotechnol; 2015; 6():2207-16. PubMed ID: 26734512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electroviscous force between charged particles: beyond the thin-double-layer approximation.
    Chun B; Ladd AJ
    J Colloid Interface Sci; 2004 Jun; 274(2):687-94. PubMed ID: 15144845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic viscosity of colloidal silica suspensions at low and high volume fractions.
    Samavat S; Carrique F; Ruiz-Reina E; Zhang W; Williams PM
    J Colloid Interface Sci; 2019 Mar; 537():640-651. PubMed ID: 30476868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic interaction of AFM cantilevers with solid walls: an investigation based on AFM noise analysis.
    Benmouna F; Johannsmann D
    Eur Phys J E Soft Matter; 2002 Dec; 9(5):435-41. PubMed ID: 15011090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Focus on Two Electrokinetics Issues.
    Dai C; Sheng P
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33255260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-osmotic screening of the DNA charge in a nanopore.
    Luan B; Aksimentiev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021912. PubMed ID: 18850870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroviscous Forces on a Charged Cylinder Moving Near a Charged Wall.
    Warszyński P; van de Ven TG
    J Colloid Interface Sci; 2000 Mar; 223(1):1-15. PubMed ID: 10684664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: Mathematical modeling.
    Tripathi D; Yadav A; Bég OA
    Math Biosci; 2017 Jan; 283():155-168. PubMed ID: 27913147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics.
    Geonzon LC; Kobayashi M; Adachi Y
    Soft Matter; 2021 Sep; 17(34):7914-7920. PubMed ID: 34373877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary electroviscous effect in a suspension of charged porous spheres.
    Natraj V; Chen SB
    J Colloid Interface Sci; 2002 Jul; 251(1):200-7. PubMed ID: 16290719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic drag force on a sphere approaching a liquid-liquid interface.
    Nduaguba KC; Chukwuneke JL; Omenyi SN
    Heliyon; 2020 May; 6(5):e04089. PubMed ID: 32509994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of surface charges on the solvation forces in confined colloidal solutions.
    Grandner S; Zeng Y; v Klitzing R; Klapp SH
    J Chem Phys; 2009 Oct; 131(15):154702. PubMed ID: 20568875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle/wall electroviscous effects at the micron scale: comparison between experiments, analytical and numerical models.
    Hernández Meza JM; Vélez-Cordero JR; Ramírez Saito A; Aranda-Espinoza S; Arauz-Lara JL; Yáñez Soto B
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34818642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.