These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 35854731)
1. CycleGAN with Dynamic Criterion for Malaria Blood Cell Image Synthetization. Liang Z; Huang JX AMIA Jt Summits Transl Sci Proc; 2022; 2022():323-330. PubMed ID: 35854731 [TBL] [Abstract][Full Text] [Related]
2. Image Translation by Ad CycleGAN for COVID-19 X-Ray Images: A New Approach for Controllable GAN. Liang Z; Huang JX; Antani S Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559994 [TBL] [Abstract][Full Text] [Related]
3. A Method based on Evolutionary Algorithms and Channel Attention Mechanism to Enhance Cycle Generative Adversarial Network Performance for Image Translation. Xue Y; Zhang Y; Neri F Int J Neural Syst; 2023 May; 33(5):2350026. PubMed ID: 37016799 [TBL] [Abstract][Full Text] [Related]
4. A GAN-based image synthesis method for skin lesion classification. Qin Z; Liu Z; Zhu P; Xue Y Comput Methods Programs Biomed; 2020 Oct; 195():105568. PubMed ID: 32526536 [TBL] [Abstract][Full Text] [Related]
5. Diverse COVID-19 CT Image-to-Image Translation with Stacked Residual Dropout. Lee KW; Chin RKY Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421099 [TBL] [Abstract][Full Text] [Related]
6. Automatic generation of retinal optical coherence tomography images based on generative adversarial networks. Zhao M; Lu Z; Zhu S; Wang X; Feng J Med Phys; 2022 Nov; 49(11):7357-7367. PubMed ID: 36122302 [TBL] [Abstract][Full Text] [Related]
7. Generating Synthesized Ultrasound Biomicroscopy Images from Anterior Segment Optical Coherent Tomography Images by Generative Adversarial Networks for Iridociliary Assessment. Ye H; Yang Y; Mao K; Wang Y; Hu Y; Xu Y; Fei P; Lyv J; Chen L; Zhao P; Zheng C Ophthalmol Ther; 2022 Oct; 11(5):1817-1831. PubMed ID: 35882767 [TBL] [Abstract][Full Text] [Related]
8. Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN). Ahmad B; Jun S; Palade V; You Q; Mao L; Zhongjie M Diagnostics (Basel); 2021 Nov; 11(11):. PubMed ID: 34829494 [TBL] [Abstract][Full Text] [Related]
9. Improving nonalcoholic fatty liver disease classification performance with latent diffusion models. Hardy R; Klepich J; Mitchell R; Hall S; Villareal J; Ilin C Sci Rep; 2023 Dec; 13(1):21619. PubMed ID: 38062049 [TBL] [Abstract][Full Text] [Related]
10. On Data Augmentation for GAN Training. Tran NT; Tran VH; Nguyen NB; Nguyen TK; Cheung NM IEEE Trans Image Process; 2021; 30():1882-1897. PubMed ID: 33428571 [TBL] [Abstract][Full Text] [Related]
11. Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients. Tien HJ; Yang HC; Shueng PW; Chen JC Sci Rep; 2021 Jan; 11(1):1133. PubMed ID: 33441936 [TBL] [Abstract][Full Text] [Related]
12. Organization of a Latent Space structure in VAE/GAN trained by navigation data. Kojima H; Ikegami T Neural Netw; 2022 Aug; 152():234-243. PubMed ID: 35561527 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning. Peng Y; Chen S; Qin A; Chen M; Gao X; Liu Y; Miao J; Gu H; Zhao C; Deng X; Qi Z Radiother Oncol; 2020 Sep; 150():217-224. PubMed ID: 32622781 [TBL] [Abstract][Full Text] [Related]
14. DW-GAN: Toward High-Fidelity Color-Tones of GAN-Generated Images With Dynamic Weights. Li W; Gu C; Chen J; Ma C; Zhang X; Chen B; Chen P IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37703159 [TBL] [Abstract][Full Text] [Related]
15. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network. Hazra D; Byun YC; Kim WJ Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483 [TBL] [Abstract][Full Text] [Related]
16. High-resolution knee plain radiography image synthesis using style generative adversarial network adaptive discriminator augmentation. Ahn G; Choi BS; Ko S; Jo C; Han HS; Lee MC; Ro DH J Orthop Res; 2023 Jan; 41(1):84-93. PubMed ID: 35293648 [TBL] [Abstract][Full Text] [Related]
17. Reconstruction of multicontrast MR images through deep learning. Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314 [TBL] [Abstract][Full Text] [Related]
18. Normalization of HE-stained histological images using cycle consistent generative adversarial networks. Runz M; Rusche D; Schmidt S; Weihrauch MR; Hesser J; Weis CA Diagn Pathol; 2021 Aug; 16(1):71. PubMed ID: 34362386 [TBL] [Abstract][Full Text] [Related]
19. Graded Image Generation Using Stratified CycleGAN. Liu J; Li J; Liu T; Tam J Med Image Comput Comput Assist Interv; 2020 Oct; 12262():760-769. PubMed ID: 33145588 [TBL] [Abstract][Full Text] [Related]
20. DualG-GAN, a Dual-channel Generator based Generative Adversarial Network for text-to-face synthesis. Luo X; He X; Chen X; Qing L; Zhang J Neural Netw; 2022 Nov; 155():155-167. PubMed ID: 36058021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]