These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35855653)
1. Retention prediction of monoamine neurotransmitters in gradient liquid chromatography. Urban J; Nechvátalová M; Hekerle L J Sep Sci; 2022 Sep; 45(17):3319-3327. PubMed ID: 35855653 [TBL] [Abstract][Full Text] [Related]
2. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch. Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516 [TBL] [Abstract][Full Text] [Related]
3. Peak dispersion in gradient elution: An insight based on the plate model. Baeza-Baeza JJ; García-Alvarez-Coque MC J Chromatogr A; 2020 Feb; 1613():460670. PubMed ID: 31732158 [TBL] [Abstract][Full Text] [Related]
4. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation. Gritti F J Chromatogr A; 2016 Nov; 1473():38-47. PubMed ID: 27814914 [TBL] [Abstract][Full Text] [Related]
5. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography. Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254 [TBL] [Abstract][Full Text] [Related]
6. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography. Rutan SC; Cash K; Stoll DR J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376 [TBL] [Abstract][Full Text] [Related]
7. Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: Short silica monolithic columns. Jandera P; Hájek T J Chromatogr A; 2015 Sep; 1410():76-89. PubMed ID: 26239700 [TBL] [Abstract][Full Text] [Related]
8. Impact of changes in physicochemical parameters of the mobile phase along the column on the retention time in gradient liquid chromatography. Part A - temperature gradient. Kaczmarski K; Chutkowski M J Chromatogr A; 2021 Oct; 1655():462509. PubMed ID: 34500223 [TBL] [Abstract][Full Text] [Related]
9. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography. Baeza-Baeza JJ; García-Alvarez-Coque MC J Chromatogr A; 2020 Mar; 1615():460757. PubMed ID: 31831147 [TBL] [Abstract][Full Text] [Related]
10. Exact peak compression factor in linear gradient elution. I. Theory. Gritti F; Guiochon G J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548 [TBL] [Abstract][Full Text] [Related]
11. Simulation of elution profiles in liquid chromatography - III. Stationary phase gradients. Jeong LN; Rutan SC J Chromatogr A; 2018 Aug; 1564():128-136. PubMed ID: 29937121 [TBL] [Abstract][Full Text] [Related]
12. Influence of the pre-elution of solute in initial mobile phase on retention time and peak compression under linear gradient elution. Hao W; Wang K; Yue B; Chen Q; Huang Y; Yu J; Li D J Chromatogr A; 2020 May; 1618():460858. PubMed ID: 31954543 [TBL] [Abstract][Full Text] [Related]
13. General theory of peak compression in liquid chromatography. Gritti F J Chromatogr A; 2016 Feb; 1433():114-22. PubMed ID: 26805599 [TBL] [Abstract][Full Text] [Related]
14. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents. Jeong LN; Sajulga R; Forte SG; Stoll DR; Rutan SC J Chromatogr A; 2016 Jul; 1457():41-9. PubMed ID: 27345210 [TBL] [Abstract][Full Text] [Related]
15. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
17. Interpretive search of optimal isocratic and gradient separations in micellar liquid chromatography in extended organic solvent domains. Navarro-Huerta JA; Vargas-García AG; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2020 Apr; 1616():460784. PubMed ID: 31864726 [TBL] [Abstract][Full Text] [Related]
18. Utility of linear and nonlinear models for retention prediction in liquid chromatography. Gilar M; Hill J; McDonald TS; Gritti F J Chromatogr A; 2020 Feb; 1613():460690. PubMed ID: 31727355 [TBL] [Abstract][Full Text] [Related]
19. Testing experimental designs in liquid chromatography (I): Development and validation of a method for the comprehensive inspection of experimental designs. Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2020 Aug; 1624():461180. PubMed ID: 32540058 [TBL] [Abstract][Full Text] [Related]
20. Ternary isocratic mobile phase optimization utilizing resolution Design Space based on retention time and peak width modeling. Kawabe T; Tomitsuka T; Kajiro T; Kishi N; Toyo'oka T J Chromatogr A; 2013 Jan; 1273():95-104. PubMed ID: 23267564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]