These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35856806)

  • 41. Heterogenous Cu@ZrO
    Xia J; Du H; Dong S; Luo Y; Liu Q; Chen JS; Guo H; Li T
    Chem Commun (Camb); 2022 Dec; 58(99):13811-13814. PubMed ID: 36444816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electroreduction of Nitrate to Ammonia on Palladium-Cobalt-Oxygen Nanowire Arrays.
    Liu M; Mao Q; Shi K; Wang Z; Xu Y; Li X; Wang L; Wang H
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13169-13176. PubMed ID: 35263079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CoO nanoparticle decorated N-doped carbon nanotubes: a high-efficiency catalyst for nitrate reduction to ammonia.
    Chen Q; Liang J; Yue L; Luo Y; Liu Q; Li N; Alshehri AA; Li T; Guo H; Sun X
    Chem Commun (Camb); 2022 May; 58(39):5901-5904. PubMed ID: 35474474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Atomically Dispersed Cu Sites on Dual-Mesoporous N-Doped Carbon for Efficient Ammonia Electrosynthesis from Nitrate.
    Xu M; Xie Q; Duan D; Zhang Y; Zhou Y; Zhou H; Li X; Wang Y; Gao P; Ye W
    ChemSusChem; 2022 Jun; 15(11):e202200231. PubMed ID: 35384362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of Interfacial Cu-[O
    Jing P; Liu P; Hu M; Xu X; Liu B; Zhang J
    Small; 2022 Jun; 18(23):e2201200. PubMed ID: 35532198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tuning the Oxidation State of Cu Electrodes for Selective Electrosynthesis of Ammonia from Nitrate.
    Yuan J; Xing Z; Tang Y; Liu C
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52469-52478. PubMed ID: 34723479
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate.
    Kuang P; Natsui K; Einaga Y
    Chemosphere; 2018 Nov; 210():524-530. PubMed ID: 30029144
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ formation of Co
    Devi RK; Muthusankar G; Chen SM; Gopalakrishnan G
    Mikrochim Acta; 2021 May; 188(6):196. PubMed ID: 34036435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemical removal of nitrate by Cu/Ti electrode coupled with copper-modified activated carbon particles at a low current density.
    Wang Q; Huang H; Wang L; Chen Y
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17567-17576. PubMed ID: 31025278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mo/P Dual-Doped Co/Oxygen-Deficient Co
    Hao Y; Du G; Fan Y; Jia L; Han D; Zhao W; Su Q; Ding S; Xu B
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55263-55271. PubMed ID: 34756011
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D Flower-Like Zinc Cobaltite for Electrocatalytic Reduction of Nitrate to Ammonia under Ambient Conditions.
    Huang P; Fan T; Ma X; Zhang J; Zhang Y; Chen Z; Yi X
    ChemSusChem; 2022 Feb; 15(4):e202102049. PubMed ID: 34927377
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes.
    Zhang G; Li X; Chen K; Guo Y; Ma D; Chu K
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202300054. PubMed ID: 36734975
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Co-NCNT nanohybrid as a highly active catalyst for the electroreduction of nitrate to ammonia.
    Chen J; Zhou Q; Yue L; Zhao D; Zhang L; Luo Y; Liu Q; Li N; Alshehri AA; Hamdy MS; Gong F; Sun X
    Chem Commun (Camb); 2022 Mar; 58(23):3787-3790. PubMed ID: 35229095
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facile Preparation of Carbon Shells-Coated O-Doped Molybdenum Carbide Nanoparticles as High Selective Electrocatalysts for Nitrogen Reduction Reaction under Ambient Conditions.
    Qu X; Shen L; Mao Y; Lin J; Li Y; Li G; Zhang Y; Jiang Y; Sun S
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31869-31877. PubMed ID: 31393100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemically Deposited Amorphous Cobalt-Nickel-Doped Copper Oxide as an Efficient Electrocatalyst toward Water Oxidation Reaction.
    Asghar MA; Ali A; Haider A; Zaheer M; Nisar T; Wagner V; Akhter Z
    ACS Omega; 2021 Aug; 6(30):19419-19426. PubMed ID: 34368529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controllable reconstruction of copper nanowires into nanotubes for efficient electrocatalytic nitrate conversion into ammonia.
    Li C; Liu S; Xu Y; Ren T; Guo Y; Wang Z; Li X; Wang L; Wang H
    Nanoscale; 2022 Sep; 14(34):12332-12338. PubMed ID: 35969200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Co/N-doped carbon nanospheres derived from an adenine-based metal organic framework enabled high-efficiency electrocatalytic nitrate reduction to ammonia.
    Chen J; Gong T; Hou Q; Li J; Zhang L; Zhao D; Luo Y; Zheng D; Li T; Sun S; Cai Z; Liu Q; Xie L; Wu M; Alshehri AA; Sun X
    Chem Commun (Camb); 2022 Dec; 58(97):13459-13462. PubMed ID: 36385387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bismuth-Based Free-Standing Electrodes for Ambient-Condition Ammonia Production in Neutral Media.
    Sun Y; Deng Z; Song XM; Li H; Huang Z; Zhao Q; Feng D; Zhang W; Liu Z; Ma T
    Nanomicro Lett; 2020 Jun; 12(1):133. PubMed ID: 34138093
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption.
    Wang Y; Xu A; Wang Z; Huang L; Li J; Li F; Wicks J; Luo M; Nam DH; Tan CS; Ding Y; Wu J; Lum Y; Dinh CT; Sinton D; Zheng G; Sargent EH
    J Am Chem Soc; 2020 Mar; 142(12):5702-5708. PubMed ID: 32118414
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Promoting electrocatalytic carbon monoxide reduction to ethylene on copper-polypyrrole interface.
    Ji Y; Yang C; Qian L; Zhang L; Zheng G
    J Colloid Interface Sci; 2021 Oct; 600():847-853. PubMed ID: 34051469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.