These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35857234)

  • 21. Optogenetic control of human neurons in organotypic brain cultures.
    Andersson M; Avaliani N; Svensson A; Wickham J; Pinborg LH; Jespersen B; Christiansen SH; Bengzon J; Woldbye DP; Kokaia M
    Sci Rep; 2016 Apr; 6():24818. PubMed ID: 27098488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The development and application of optogenetics.
    Fenno L; Yizhar O; Deisseroth K
    Annu Rev Neurosci; 2011; 34():389-412. PubMed ID: 21692661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Chimera Na+-Pump Rhodopsin as an Effective Optogenetic Silencer.
    Hoque MR; Ishizuka T; Inoue K; Abe-Yoshizumi R; Igarashi H; Mishima T; Kandori H; Yawo H
    PLoS One; 2016; 11(11):e0166820. PubMed ID: 27861619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Optogenetics in Investigations of Brain Mechanisms of Behavior].
    Dygalo NN
    Usp Fiziol Nauk; 2015; 46(2):17-23. PubMed ID: 26155665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.
    Schild LC; Glauser DA
    Genetics; 2015 Aug; 200(4):1029-34. PubMed ID: 26022242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. All-Optical Interrogation of Neural Circuits.
    Emiliani V; Cohen AE; Deisseroth K; Häusser M
    J Neurosci; 2015 Oct; 35(41):13917-26. PubMed ID: 26468193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetics: Applications in psychiatric research.
    Shirai F; Hayashi-Takagi A
    Psychiatry Clin Neurosci; 2017 Jun; 71(6):363-372. PubMed ID: 28233379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies for expanding the operational range of channelrhodopsin in optogenetic vision.
    Mutter M; Münch TA
    PLoS One; 2013; 8(11):e81278. PubMed ID: 24312285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in engineering microbial rhodopsins for optogenetics.
    McIsaac RS; Bedbrook CN; Arnold FH
    Curr Opin Struct Biol; 2015 Aug; 33():8-15. PubMed ID: 26038227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing Synaptic Signaling with Optogenetic Stimulation and Genetically Encoded Calcium Reporters.
    Borja GB; Shroff H; Upadhyay H; Liu PW; Baru V; Cheng YC; McManus OB; Williams LA; Dempsey GT; Werley CA
    Methods Mol Biol; 2021; 2191():109-134. PubMed ID: 32865742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive Dual- and Triple-Feature Intersectional Single-Vector Delivery of Diverse Functional Payloads to Cells of Behaving Mammals.
    Fenno LE; Ramakrishnan C; Kim YS; Evans KE; Lo M; Vesuna S; Inoue M; Cheung KYM; Yuen E; Pichamoorthy N; Hong ASO; Deisseroth K
    Neuron; 2020 Sep; 107(5):836-853.e11. PubMed ID: 32574559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses.
    Jin L; Lange W; Kempmann A; Maybeck V; Günther A; Gruteser N; Baumann A; Offenhäusser A
    J Biotechnol; 2016 Sep; 233():171-80. PubMed ID: 27416794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Saccadic eye movements evoked by optogenetic activation of primate V1.
    Jazayeri M; Lindbloom-Brown Z; Horwitz GD
    Nat Neurosci; 2012 Oct; 15(10):1368-70. PubMed ID: 22941109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.
    Berglund K; Birkner E; Augustine GJ; Hochgeschwender U
    PLoS One; 2013; 8(3):e59759. PubMed ID: 23544095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymerhodopsins: novel photoregulated catalysts for optogenetics.
    Mukherjee S; Hegemann P; Broser M
    Curr Opin Struct Biol; 2019 Aug; 57():118-126. PubMed ID: 30954887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin.
    Mahn M; Saraf-Sinik I; Patil P; Pulin M; Bitton E; Karalis N; Bruentgens F; Palgi S; Gat A; Dine J; Wietek J; Davidi I; Levy R; Litvin A; Zhou F; Sauter K; Soba P; Schmitz D; Lüthi A; Rost BR; Wiegert JS; Yizhar O
    Neuron; 2021 May; 109(10):1621-1635.e8. PubMed ID: 33979634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. History and Perspectives of Ion-Transporting Rhodopsins.
    Kandori H
    Adv Exp Med Biol; 2021; 1293():3-19. PubMed ID: 33398804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
    Kumar P; Lavis LD
    Annu Rev Neurosci; 2022 Jul; 45():131-150. PubMed ID: 35226826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward the second generation of optogenetic tools.
    Knöpfel T; Lin MZ; Levskaya A; Tian L; Lin JY; Boyden ES
    J Neurosci; 2010 Nov; 30(45):14998-5004. PubMed ID: 21068304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.