BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35857236)

  • 1. In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins.
    Tian Y; Gao S; Nagel G
    Methods Mol Biol; 2022; 2501():325-338. PubMed ID: 35857236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Properties and Optogenetic Applications of Enzymerhodopsins.
    Tsunoda SP; Sugiura M; Kandori H
    Adv Exp Med Biol; 2021; 1293():153-165. PubMed ID: 33398812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and Modification of Light-Sensitive Phosphodiesterases from Choanoflagellates.
    Tian Y; Yang S; Nagel G; Gao S
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel rhodopsin phosphodiesterase from
    Tian Y; Gao S; Yang S; Nagel G
    Biochem J; 2018 Mar; 475(6):1121-1128. PubMed ID: 29483295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases.
    Tian Y; Gao S; von der Heyde EL; Hallmann A; Nagel G
    BMC Biol; 2018 Dec; 16(1):144. PubMed ID: 30522480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.
    Gao S; Nagpal J; Schneider MW; Kozjak-Pavlovic V; Nagel G; Gottschalk A
    Nat Commun; 2015 Sep; 6():8046. PubMed ID: 26345128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the mechanism of rhodopsin phosphodiesterase.
    Ikuta T; Shihoya W; Sugiura M; Yoshida K; Watari M; Tokano T; Yamashita K; Katayama K; Tsunoda SP; Uchihashi T; Kandori H; Nureki O
    Nat Commun; 2020 Nov; 11(1):5605. PubMed ID: 33154353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An engineered membrane-bound guanylyl cyclase with light-switchable activity.
    Tian Y; Nagel G; Gao S
    BMC Biol; 2021 Mar; 19(1):54. PubMed ID: 33775243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. History and Perspectives of Ion-Transporting Rhodopsins.
    Kandori H
    Adv Exp Med Biol; 2021; 1293():3-19. PubMed ID: 33398804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Modular Rhodopsins from Green Algae Hold Great Potential for Cellular Optogenetic Modulation Across the Biological Model Systems.
    Awasthi M; Sushmita K; Kaushik MS; Ranjan P; Kateriya S
    Life (Basel); 2020 Oct; 10(11):. PubMed ID: 33126644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A light-sensing system in the common ancestor of the fungi.
    Galindo LJ; Milner DS; Gomes SL; Richards TA
    Curr Biol; 2022 Jul; 32(14):3146-3153.e3. PubMed ID: 35675809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.
    Scheib U; Stehfest K; Gee CE; Körschen HG; Fudim R; Oertner TG; Hegemann P
    Sci Signal; 2015 Aug; 8(389):rs8. PubMed ID: 26268609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic tools for manipulation of cyclic nucleotides functionally coupled to cyclic nucleotide-gated channels.
    Henß T; Nagpal J; Gao S; Scheib U; Pieragnolo A; Hirschhäuser A; Schneider-Warme F; Hegemann P; Nagel G; Gottschalk A
    Br J Pharmacol; 2022 Jun; 179(11):2519-2537. PubMed ID: 33733470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymerhodopsins: novel photoregulated catalysts for optogenetics.
    Mukherjee S; Hegemann P; Broser M
    Curr Opin Struct Biol; 2019 Aug; 57():118-126. PubMed ID: 30954887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inner mechanics of rhodopsin guanylyl cyclase during cGMP-formation revealed by real-time FTIR spectroscopy.
    Fischer P; Mukherjee S; Schiewer E; Broser M; Bartl F; Hegemann P
    Elife; 2021 Oct; 10():. PubMed ID: 34665128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus.
    Avelar GM; Schumacher RI; Zaini PA; Leonard G; Richards TA; Gomes SL
    Curr Biol; 2014 Jun; 24(11):1234-40. PubMed ID: 24835457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity.
    Yoshida K; Tsunoda SP; Brown LS; Kandori H
    J Biol Chem; 2017 May; 292(18):7531-7541. PubMed ID: 28302718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances and prospects of rhodopsin-based optogenetics in plant research.
    Zhou Y; Ding M; Nagel G; Konrad KR; Gao S
    Plant Physiol; 2021 Oct; 187(2):572-589. PubMed ID: 35237820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A link between rhodopsin and disc membrane cyclic nucleotide phosphodiesterase. Action spectrum and sensitivity to illumination.
    Keirns JJ; Miki N; Bitensky MW; Keirns M
    Biochemistry; 1975 Jun; 14(12):2760-6. PubMed ID: 167806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.