BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35857236)

  • 21. Functional assay of light-induced ion-transport by rhodopsins.
    Hososhima S; Abe-Yoshizumi R; Kandori H
    Methods Enzymol; 2023; 679():331-342. PubMed ID: 36682869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenylate cyclase, guanylate cyclase and cyclic nucleotide phosphodiesterases of guinea-pig cardiac sarcolemma.
    St Louis PJ; Sulakhe PV
    Biochem J; 1976 Sep; 158(3):535-41. PubMed ID: 10895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light- and GTP-activated photoreceptor phosphodiesterase: regulation by a light-activated GTPase and identification of rhodopsin as the phosphodiesterase binding site.
    Bitensky MW; Wheeler GL; Aloni B; Vetury S; Matuo Y
    Adv Cyclic Nucleotide Res; 1978; 9():553-72. PubMed ID: 27082
    [No Abstract]   [Full Text] [Related]  

  • 24. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation.
    Méry PF; Pavoine C; Belhassen L; Pecker F; Fischmeister R
    J Biol Chem; 1993 Dec; 268(35):26286-95. PubMed ID: 7902837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Unlimited Potential of Microbial Rhodopsins as Optical Tools.
    Kojima K; Shibukawa A; Sudo Y
    Biochemistry; 2020 Jan; 59(3):218-229. PubMed ID: 31815443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The evolutionary relationship between microbial rhodopsins and metazoan rhodopsins.
    Shen L; Chen C; Zheng H; Jin L
    ScientificWorldJournal; 2013; 2013():435651. PubMed ID: 23476135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The alpha2beta1 isoform of guanylyl cyclase mediates plasma membrane localized nitric oxide signalling.
    Bellingham M; Evans TJ
    Cell Signal; 2007 Oct; 19(10):2183-93. PubMed ID: 17643962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and monomer/dimer equilibrium for the guanylyl cyclase domain of the optogenetics protein RhoGC.
    Kumar RP; Morehouse BR; Fofana J; Trieu MM; Zhou DH; Lorenz MO; Oprian DD
    J Biol Chem; 2017 Dec; 292(52):21578-21589. PubMed ID: 29118188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and Characterization of RhoPDE, a Retinylidene/Phosphodiesterase Fusion Protein and Potential Optogenetic Tool from the Choanoflagellate Salpingoeca rosetta.
    Lamarche LB; Kumar RP; Trieu MM; Devine EL; Cohen-Abeles LE; Theobald DL; Oprian DD
    Biochemistry; 2017 Oct; 56(43):5812-5822. PubMed ID: 28976747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Daily variations in cGMP, guanylate cyclase and phosphodiesterase in the golden hamster retina.
    Faillace MP; Keller Sarmiento MI; Rosenstein RE
    Vision Res; 1996 May; 36(10):1365-9. PubMed ID: 8762756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin.
    Sasaki K; Yamashita T; Yoshida K; Inoue K; Shichida Y; Kandori H
    PLoS One; 2014; 9(3):e91323. PubMed ID: 24621599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of cyclic nucleotide phosphodiesterases in Xenopus laevis ovary.
    Allende C; Plaza M
    Comp Biochem Physiol B; 1987; 88(2):581-7. PubMed ID: 2827950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhodopsins at a glance.
    Nagata T; Inoue K
    J Cell Sci; 2021 Nov; 134(22):. PubMed ID: 34821363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RhoMax: Computational Prediction of Rhodopsin Absorption Maxima Using Geometric Deep Learning.
    Sela M; Church JR; Schapiro I; Schneidman-Duhovny D
    J Chem Inf Model; 2024 Jun; 64(12):4630-4639. PubMed ID: 38829021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergent evolutionary counterion displacement of bilaterian opsins in ciliary cells.
    Sakai K; Ikeuchi H; Fujiyabu C; Imamoto Y; Yamashita T
    Cell Mol Life Sci; 2022 Aug; 79(9):493. PubMed ID: 36001156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid nitric oxide-induced desensitization of the cGMP response is caused by increased activity of phosphodiesterase type 5 paralleled by phosphorylation of the enzyme.
    Mullershausen F; Russwurm M; Thompson WJ; Liu L; Koesling D; Friebe A
    J Cell Biol; 2001 Oct; 155(2):271-8. PubMed ID: 11604422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties.
    Sudo Y; Ihara K; Kobayashi S; Suzuki D; Irieda H; Kikukawa T; Kandori H; Homma M
    J Biol Chem; 2011 Feb; 286(8):5967-76. PubMed ID: 21135094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins.
    Inoue K
    Adv Exp Med Biol; 2021; 1293():89-126. PubMed ID: 33398809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and degradation of cAMP in
    Saraullo V; Di Siervi N; Jerez B; Davio C; Zurita A
    Biochem J; 2017 Nov; 474(23):4001-4017. PubMed ID: 29054977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localization and dimer stability of a newly identified microbial rhodopsin from a polar, non-motile green algae.
    Ranjan P; Kateriya S
    BMC Res Notes; 2018 Jan; 11(1):65. PubMed ID: 29361974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.