These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35857533)

  • 21. Bioinspired Interfaces with Superwettability: From Materials to Chemistry.
    Su B; Tian Y; Jiang L
    J Am Chem Soc; 2016 Feb; 138(6):1727-48. PubMed ID: 26652501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of highly robust super-liquid-repellent surfaces that can resist high-velocity impact of low-surface-tension liquids.
    Wang Y; Fan Y; Liu H; Wang S; Liu L; Dou Y; Huang S; Li J; Tian X
    Lab Chip; 2024 Mar; 24(6):1658-1667. PubMed ID: 38299611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications.
    Zhang S; Huang J; Chen Z; Lai Y
    Small; 2017 Jan; 13(3):. PubMed ID: 27935211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces.
    Jung YC; Bhushan B
    J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications.
    Cao M; Guo D; Yu C; Li K; Liu M; Jiang L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3615-23. PubMed ID: 26447551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Universal and Switchable Omni-Repellency of Liquid-Infused Surfaces for On-Demand Separation of Multiphase Liquid Mixtures.
    Mai VC; Hou S; Pillai PR; Lim TT; Duan H
    ACS Nano; 2021 Apr; 15(4):6977-6986. PubMed ID: 33754693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust Underwater Oil-Repellent Biomimetic Ceramic Surfaces: Combining the Stability and Reproducibility of Functional Structures.
    Li M; Zhou S; Guan Q; Li W; Li C; Bouville F; Bai H; Saiz E
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):46077-46085. PubMed ID: 36169925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Underwater Superoleophobic Matrix-Formatted Liquid-Infused Porous Biomembranes for Extremely Efficient Deconstitution of Nanoemulsions.
    Ashrafi Z; Lucia L; Krause W
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50996-51006. PubMed ID: 33119268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimuli-responsive surfaces for switchable wettability and adhesion.
    Li C; Li M; Ni Z; Guan Q; Blackman BRK; Saiz E
    J R Soc Interface; 2021 Jun; 18(179):20210162. PubMed ID: 34129792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water.
    Parbat D; Gaffar S; Rather AM; Gupta A; Manna U
    Chem Sci; 2017 Sep; 8(9):6542-6554. PubMed ID: 28989680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From Beetles in Nature to the Laboratory: Actuating Underwater Locomotion on Hydrophobic Surfaces.
    Pinchasik BE; Steinkühler J; Wuytens P; Skirtach AG; Fratzl P; Möhwald H
    Langmuir; 2015 Dec; 31(51):13734-42. PubMed ID: 26633751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Compensating Liquid-Repellent Surfaces with Stratified Morphology.
    Hu S; Cao X; Reddyhoff T; Puhan D; Vladescu SC; Wang Q; Shi X; Peng Z; deMello AJ; Dini D
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4174-4182. PubMed ID: 31889435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controllable Broadband Optical Transparency and Wettability Switching of Temperature-Activated Solid/Liquid-Infused Nanofibrous Membranes.
    Manabe K; Matsubayashi T; Tenjimbayashi M; Moriya T; Tsuge Y; Kyung KH; Shiratori S
    ACS Nano; 2016 Oct; 10(10):9387-9396. PubMed ID: 27662461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smart Bionic Surfaces with Switchable Wettability and Applications.
    Li S; Fan Y; Liu Y; Niu S; Han Z; Ren L
    J Bionic Eng; 2021; 18(3):473-500. PubMed ID: 34131422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Durable Liquid- and Solid-Repellent Elastomeric Coatings Infused with Partially Crosslinked Lubricants.
    Wang J; Wu B; Dhyani A; Repetto T; Gayle AJ; Cho TH; Dasgupta NP; Tuteja A
    ACS Appl Mater Interfaces; 2022 May; 14(19):22466-22475. PubMed ID: 35533373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Development of Durable and Self-Healing Surfaces with Special Wettability.
    Chen K; Wu Y; Zhou S; Wu L
    Macromol Rapid Commun; 2016 Mar; 37(6):463-85. PubMed ID: 26833559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinspired Superspreading Surface: From Essential Mechanism to Application.
    Miao W; Tian Y; Jiang L
    Acc Chem Res; 2022 Jun; 55(11):1467-1479. PubMed ID: 35575184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research.
    Luo Y; Song W; Wang X
    Micron; 2016 Mar; 82():9-16. PubMed ID: 26760225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.