These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35857749)

  • 1. A proposal of a new automated method for SfM/MVS 3D reconstruction through comparisons of 3D data by SfM/MVS and handheld laser scanners.
    Kaneda A; Nakagawa T; Tamura K; Noshita K; Nakao H
    PLoS One; 2022; 17(7):e0270660. PubMed ID: 35857749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical note: 3D from standard digital photography of human crania-a preliminary assessment.
    Katz D; Friess M
    Am J Phys Anthropol; 2014 May; 154(1):152-8. PubMed ID: 24711122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A consistent methodology for forensic photogrammetry scanning of human remains using a single handheld DSLR camera.
    Ujvári Z; Metzger M; Gárdonyi G
    Forensic Sci Res; 2023 Dec; 8(4):295-307. PubMed ID: 38405626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the attributes of urban trees using terrestrial photogrammetry.
    Sadeghian H; Naghavi H; Maleknia R; Soosani J; Pfeifer N
    Environ Monit Assess; 2022 Jul; 194(9):625. PubMed ID: 35908128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure from motion photogrammetry in ecology: Does the choice of software matter?
    Forsmoo J; Anderson K; Macleod CJA; Wilkinson ME; DeBell L; Brazier RE
    Ecol Evol; 2019 Dec; 9(23):12964-12979. PubMed ID: 31871623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simple Way to Reduce 3D Model Deformation in Smartphone Photogrammetry.
    Jasińska A; Pyka K; Pastucha E; Midtiby HS
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Reconstruction of the Pediatric Larynx via Structure from Motion Photogrammetry: A Pilot Study.
    Barbour MC; Amin SN; Friedman SD; Perez FA; Bly RA; Johnson KE; Parikh SR; Richardson CM; Dahl JP; Aliseda A
    Otolaryngol Head Neck Surg; 2024 Apr; 170(4):1195-1199. PubMed ID: 38168480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.
    Swetnam TL; Gillan JK; Sankey TT; McClaran MP; Nichols MH; Heilman P; McVay J
    Front Plant Sci; 2017; 8():2144. PubMed ID: 29379511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of Different Modalities to Record Natural Head Position in 3 Dimensions: A Systematic Review.
    Leung MY; Lo J; Leung YY
    J Oral Maxillofac Surg; 2016 Nov; 74(11):2261-2284. PubMed ID: 27235181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.
    Liu W; Cheung Y; Sawant A; Ruan D
    Med Phys; 2016 May; 43(5):2353. PubMed ID: 27147347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical assessment of the potential for Structure-from-Motion photogrammetry to produce high fidelity 3D dental models.
    Silvester CM; Hillson S
    Am J Phys Anthropol; 2020 Oct; 173(2):381-392. PubMed ID: 32748988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case study on the historical peninsula of Istanbul based on three-dimensional modeling by using photogrammetry and terrestrial laser scanning.
    Ergun B; Sahin C; Baz I; Ustuntas T
    Environ Monit Assess; 2010 Jun; 165(1-4):595-601. PubMed ID: 19479333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Open-Source Photogrammetry Workflow for Reconstructing 3D Models.
    Zhang C; Maga AM
    Integr Org Biol; 2023; 5(1):obad024. PubMed ID: 37465202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the scanners and drone for comparison of point cloud accuracy at traffic accident analysis.
    Kamnik R; Nekrep Perc M; Topolšek D
    Accid Anal Prev; 2020 Feb; 135():105391. PubMed ID: 31835075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level.
    Rose JC; Paulus S; Kuhlmann H
    Sensors (Basel); 2015 Apr; 15(5):9651-65. PubMed ID: 25919368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technological innovation in the recovery and analysis of 3D forensic footwear evidence: Structure from motion (SfM) photogrammetry.
    Larsen H; Budka M; Bennett MR
    Sci Justice; 2021 Jul; 61(4):356-368. PubMed ID: 34172124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do-It-Yourself digital archaeology: Introduction and practical applications of photography and photogrammetry for the 2D and 3D representation of small objects and artefacts.
    Cerasoni JN; do Nascimento Rodrigues F; Tang Y; Hallett EY
    PLoS One; 2022; 17(4):e0267168. PubMed ID: 35427405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.
    Li GK; Gao F; Wang ZG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8459-62. PubMed ID: 22256311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional surface scanning methods in osteology: A topographical and geometric morphometric comparison.
    Waltenberger L; Rebay-Salisbury K; Mitteroecker P
    Am J Phys Anthropol; 2021 Apr; 174(4):846-858. PubMed ID: 33410519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.
    Liu W; Cheung Y; Sabouri P; Arai TJ; Sawant A; Ruan D
    Med Phys; 2015 Nov; 42(11):6564-71. PubMed ID: 26520747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.