These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 35857842)
1. G6PD-mediated increase in de novo NADP Zhang Y; Xu Y; Lu W; Li J; Yu S; Brown EJ; Stanger BZ; Rabinowitz JD; Yang X Sci Adv; 2022 Jul; 8(29):eabo0404. PubMed ID: 35857842 [TBL] [Abstract][Full Text] [Related]
3. Glucose-6-phosphate dehydrogenase maintains redox homeostasis and biosynthesis in LKB1-deficient KRAS-driven lung cancer. Lan T; Arastu S; Lam J; Kim H; Wang W; Wang S; Bhatt V; Lopes EC; Hu Z; Sun M; Luo X; Ghergurovich JM; Su X; Rabinowitz JD; White E; Guo JY Nat Commun; 2024 Jul; 15(1):5857. PubMed ID: 38997257 [TBL] [Abstract][Full Text] [Related]
4. A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Jiang P; Du W; Yang X Cell Cycle; 2013 Dec; 12(24):3720-6. PubMed ID: 24270845 [TBL] [Abstract][Full Text] [Related]
5. Rapid phosphorylation of glucose-6-phosphate dehydrogenase by casein kinase 2 sustains redox homeostasis under ionizing radiation. Hao Y; Ren T; Huang X; Li M; Lee JH; Chen Q; Liu R; Tang Q Redox Biol; 2023 Sep; 65():102810. PubMed ID: 37478541 [TBL] [Abstract][Full Text] [Related]
6. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B₁-mediated cytotoxicity. Lin HR; Wu CC; Wu YH; Hsu CW; Cheng ML; Chiu DT J Proteome Res; 2013 Jul; 12(7):3434-48. PubMed ID: 23742107 [TBL] [Abstract][Full Text] [Related]
7. Salt-Inducible Kinase 3 Provides Sugar Tolerance by Regulating NADPH/NADP Teesalu M; Rovenko BM; Hietakangas V Curr Biol; 2017 Feb; 27(3):458-464. PubMed ID: 28132818 [TBL] [Abstract][Full Text] [Related]
8. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018 [TBL] [Abstract][Full Text] [Related]
9. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells. Torres-Ramírez N; Baiza-Gutman LA; García-Macedo R; Ortega-Camarillo C; Contreras-Ramos A; Medina-Navarro R; Cruz M; Ibáñez-Hernández MÁ; Díaz-Flores M Life Sci; 2013 Dec; 93(25-26):975-85. PubMed ID: 24184296 [TBL] [Abstract][Full Text] [Related]
10. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. Wang YP; Zhou LS; Zhao YZ; Wang SW; Chen LL; Liu LX; Ling ZQ; Hu FJ; Sun YP; Zhang JY; Yang C; Yang Y; Xiong Y; Guan KL; Ye D EMBO J; 2014 Jun; 33(12):1304-20. PubMed ID: 24769394 [TBL] [Abstract][Full Text] [Related]
11. Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence. Cheng ML; Ho HY; Wu YH; Chiu DT Free Radic Biol Med; 2004 Mar; 36(5):580-91. PubMed ID: 14980702 [TBL] [Abstract][Full Text] [Related]
12. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo. Dong LH; Li L; Song Y; Duan ZL; Sun SG; Lin YL; Miao SB; Yin YJ; Shu YN; Li H; Chen P; Zhao LL; Han M Circ Res; 2015 Sep; 117(8):684-94. PubMed ID: 26291555 [TBL] [Abstract][Full Text] [Related]
13. Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress. Ho HY; Cheng ML; Shiao MS; Chiu DT Free Radic Biol Med; 2013 Jan; 54():71-84. PubMed ID: 23142419 [TBL] [Abstract][Full Text] [Related]
14. Effects of G6PD overexpression in NIH3T3 cells treated with tert-butyl hydroperoxide or paraquat. Kuo WY; Tang TK Free Radic Biol Med; 1998 May; 24(7-8):1130-8. PubMed ID: 9626567 [TBL] [Abstract][Full Text] [Related]
15. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases. Ho HY; Cheng ML; Chiu DT Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517 [TBL] [Abstract][Full Text] [Related]
16. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Yang HC; Wu YH; Yen WC; Liu HY; Hwang TL; Stern A; Chiu DT Cells; 2019 Sep; 8(9):. PubMed ID: 31500396 [TBL] [Abstract][Full Text] [Related]
17. Influenza Virus Down-Modulates G6PD Expression and Activity to Induce Oxidative Stress and Promote Its Replication. De Angelis M; Amatore D; Checconi P; Zevini A; Fraternale A; Magnani M; Hiscott J; De Chiara G; Palamara AT; Nencioni L Front Cell Infect Microbiol; 2021; 11():804976. PubMed ID: 35071051 [TBL] [Abstract][Full Text] [Related]
18. Glucose-6-phosphate dehydrogenase exerts antistress effects independently of its enzymatic activity. Jin X; Li X; Li L; Zhong B; Hong Y; Niu J; Li B J Biol Chem; 2022 Dec; 298(12):102587. PubMed ID: 36243112 [TBL] [Abstract][Full Text] [Related]
19. Glucose 6-P Dehydrogenase-An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise. García-Domínguez E; Carretero A; Viña-Almunia A; Domenech-Fernandez J; Olaso-Gonzalez G; Viña J; Gomez-Cabrera MC Cells; 2022 Sep; 11(19):. PubMed ID: 36231003 [TBL] [Abstract][Full Text] [Related]
20. Discovery of Small-Molecule Activators for Glucose-6-Phosphate Dehydrogenase (G6PD) Using Machine Learning Approaches. Saddala MS; Lennikov A; Huang H Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]