These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35857868)

  • 1. Phosphorylation of Arl4A/D promotes their binding by the HYPK chaperone for their stable recruitment to the plasma membrane.
    Lin MC; Yu CJ; Lee FS
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2207414119. PubMed ID: 35857868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative recruitment of Arl4A and Pak1 to the plasma membrane contributes to sustained Pak1 activation for cell migration.
    Chen KJ; Chiang TC; Yu CJ; Lee FS
    J Cell Sci; 2020 Feb; 133(3):. PubMed ID: 31932503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arf family GTPase Arl4A complexes with ELMO proteins to promote actin cytoskeleton remodeling and reveals a versatile Ras-binding domain in the ELMO proteins family.
    Patel M; Chiang TC; Tran V; Lee FJ; Côté JF
    J Biol Chem; 2011 Nov; 286(45):38969-79. PubMed ID: 21930703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADP-ribosylation factor-like 4A interacts with Robo1 to promote cell migration by regulating Cdc42 activation.
    Chiang TS; Lin MC; Tsai MC; Chen CH; Jang LT; Lee FS
    Mol Biol Cell; 2019 Jan; 30(1):69-81. PubMed ID: 30427759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane.
    Hofmann I; Thompson A; Sanderson CM; Munro S
    Curr Biol; 2007 Apr; 17(8):711-6. PubMed ID: 17398095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARL4A acts with GCC185 to modulate Golgi complex organization.
    Lin YC; Chiang TC; Liu YT; Tsai YT; Jang LT; Lee FJ
    J Cell Sci; 2011 Dec; 124(Pt 23):4014-26. PubMed ID: 22159419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential.
    Li CC; Wu TS; Huang CF; Jang LT; Liu YT; You ST; Liou GG; Lee FJ
    PLoS One; 2012; 7(8):e43552. PubMed ID: 22927989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling.
    Li CC; Chiang TC; Wu TS; Pacheco-Rodriguez G; Moss J; Lee FJ
    Mol Biol Cell; 2007 Nov; 18(11):4420-37. PubMed ID: 17804820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the small GTPase Arl4D suppresses adipogenesis.
    Yu J; Ka SO; Kwon KB; Lee SM; Park JW; Park BH
    Int J Mol Med; 2011 Nov; 28(5):793-8. PubMed ID: 21769420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation.
    Arnesen T; Starheim KK; Van Damme P; Evjenth R; Dinh H; Betts MJ; Ryningen A; Vandekerckhove J; Gevaert K; Anderson D
    Mol Cell Biol; 2010 Apr; 30(8):1898-909. PubMed ID: 20154145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arl4D-EB1 interaction promotes centrosomal recruitment of EB1 and microtubule growth.
    Lin SJ; Huang CF; Wu TS; Li CC; Lee FS
    Mol Biol Cell; 2020 Oct; 31(21):2348-2362. PubMed ID: 32755434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thyroid cancer prognostic biomarker ARL4A and its relationship with immune infiltration.
    Han X; Liao J; Zhou Y; Hu X; Wu H
    Int J Clin Exp Pathol; 2024; 17(4):108-120. PubMed ID: 38716351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric regulation of Arf GTPases and their GEFs at the membrane interface.
    Nawrotek A; Zeghouf M; Cherfils J
    Small GTPases; 2016 Oct; 7(4):283-296. PubMed ID: 27449855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arf proteins in cancer cell migration.
    Casalou C; Faustino A; Barral DC
    Small GTPases; 2016 Oct; 7(4):270-282. PubMed ID: 27589148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic identification and functional characterization of a novel ARF6 GTPase-activating protein, ACAP4.
    Fang Z; Miao Y; Ding X; Deng H; Liu S; Wang F; Zhou R; Watson C; Fu C; Hu Q; Lillard JW; Powell M; Chen Y; Forte JG; Yao X
    Mol Cell Proteomics; 2006 Aug; 5(8):1437-49. PubMed ID: 16737952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved C-terminal nascent peptide binding domain of HYPK facilitates its chaperone-like activity.
    Raychaudhuri S; Banerjee R; Mukhopadhyay S; Bhattacharyya NP
    J Biosci; 2014 Sep; 39(4):659-72. PubMed ID: 25116620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centaurin-alpha1 is an in vivo phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein for ARF6 that is involved in actin cytoskeleton organization.
    Venkateswarlu K; Brandom KG; Lawrence JL
    J Biol Chem; 2004 Feb; 279(8):6205-8. PubMed ID: 14625293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ArfGAP1 acts as a GTPase-activating protein for human ADP-ribosylation factor-like 1 protein.
    Feng HP; Cheng HY; Hsiao TF; Lin TW; Hsu JW; Huang LH; Yu CJ
    FASEB J; 2021 Apr; 35(4):e21337. PubMed ID: 33715220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential membrane association properties and regulation of class I and class II Arfs.
    Duijsings D; Lanke KH; van Dooren SH; van Dommelen MM; Wetzels R; de Mattia F; Wessels E; van Kuppeveld FJ
    Traffic; 2009 Mar; 10(3):316-23. PubMed ID: 19170981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosstalk of Arf and Rab GTPases en route to cilia.
    Deretic D
    Small GTPases; 2013; 4(2):70-7. PubMed ID: 23567335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.