BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35857875)

  • 1. Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet.
    Sakamoto R; Izri Z; Shimamoto Y; Miyazaki M; Maeda YT
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2121147119. PubMed ID: 35857875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centering and symmetry breaking in confined contracting actomyosin networks.
    Ierushalmi N; Malik-Garbi M; Manhart A; Abu Shah E; Goode BL; Mogilner A; Keren K
    Elife; 2020 Apr; 9():. PubMed ID: 32314730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous symmetry breaking in active droplets provides a generic route to motility.
    Tjhung E; Marenduzzo D; Cates ME
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12381-6. PubMed ID: 22797894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active polar fluid flow in finite droplets.
    Whitfield CA; Marenduzzo D; Voituriez R; Hawkins RJ
    Eur Phys J E Soft Matter; 2014 Feb; 37(2):8. PubMed ID: 24532222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wrinkling of a spherical lipid interface induced by actomyosin cortex.
    Ito H; Nishigami Y; Sonobe S; Ichikawa M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062711. PubMed ID: 26764731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding filament and fixed filament mechanisms contribute to ring tension in the cytokinetic contractile ring.
    Alonso-Matilla R; Thiyagarajan S; O'Shaughnessy B
    Cytoskeleton (Hoboken); 2019 Nov; 76(11-12):611-625. PubMed ID: 31443136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the physics underlying symmetry breaking of the actin cytoskeleton: An artificial cell-based approach.
    Sakamoto R; Maeda YT
    Biophys Physicobiol; 2023; 20(3):e200032. PubMed ID: 38124798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tug-of-war between actomyosin-driven antagonistic forces determines the positioning symmetry in cell-sized confinement.
    Sakamoto R; Tanabe M; Hiraiwa T; Suzuki K; Ishiwata S; Maeda YT; Miyazaki M
    Nat Commun; 2020 Jun; 11(1):3063. PubMed ID: 32541780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface.
    Nishigami Y; Ito H; Sonobe S; Ichikawa M
    Sci Rep; 2016 Jan; 6():18964. PubMed ID: 26754862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Light-Responsive Contractile Actomyosin Networks with DNA Nanotechnology.
    Jahnke K; Weiss M; Weber C; Platzman I; Göpfrich K; Spatz JP
    Adv Biosyst; 2020 Sep; 4(9):e2000102. PubMed ID: 32696544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actomyosin Contraction Induces In-Bulk Motility of Cells and Droplets.
    Le Goff T; Liebchen B; Marenduzzo D
    Biophys J; 2020 Sep; 119(5):1025-1032. PubMed ID: 32795395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leading-edge-gel coupling in lamellipodium motion.
    Zimmermann J; Enculescu M; Falcke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051925. PubMed ID: 21230518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A node organization in the actomyosin contractile ring generates tension and aids stability.
    Thiyagarajan S; Wang S; O'Shaughnessy B
    Mol Biol Cell; 2017 Nov; 28(23):3286-3297. PubMed ID: 28954859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balance between Force Generation and Relaxation Leads to Pulsed Contraction of Actomyosin Networks.
    Yu Q; Li J; Murrell MP; Kim T
    Biophys J; 2018 Nov; 115(10):2003-2013. PubMed ID: 30389091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly.
    Tojkander S; Gateva G; Husain A; Krishnan R; Lappalainen P
    Elife; 2015 Dec; 4():e06126. PubMed ID: 26652273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro.
    Miyazaki M; Chiba M; Eguchi H; Ohki T; Ishiwata S
    Nat Cell Biol; 2015 Apr; 17(4):480-9. PubMed ID: 25799060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic mechanisms of cell rigidity sensing: insights from a computational model of actomyosin networks.
    Borau C; Kim T; Bidone T; García-Aznar JM; Kamm RD
    PLoS One; 2012; 7(11):e49174. PubMed ID: 23139838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of contractile forces generated in disorganized actomyosin bundles.
    Kim T
    Biomech Model Mechanobiol; 2015 Apr; 14(2):345-55. PubMed ID: 25103419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled active actomyosin gels spontaneously curve and wrinkle similar to biological cells and tissues.
    Livne G; Gat S; Armon S; Bernheim-Groswasser A
    Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2309125121. PubMed ID: 38175871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.