These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35858310)

  • 41. Fluid friction and wall viscosity of the 1D blood flow model.
    Wang XF; Nishi S; Matsukawa M; Ghigo A; Lagrée PY; Fullana JM
    J Biomech; 2016 Feb; 49(4):565-71. PubMed ID: 26862041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strain analysis of flexing blood pump diaphragms.
    Kesavan SK; Yazdani SA
    J Appl Biomater; 1992; 3(4):305-11. PubMed ID: 10147999
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnetically suspended rotary blood pump with radial type combined motor-bearing.
    Masuzawa T; Kita T; Matsuda K; Okada Y
    Artif Organs; 2000 Jun; 24(6):468-74. PubMed ID: 10886067
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Behavior of a viscoelastic valveless pump: a simple theory with experimental validation.
    Babbs CF
    Biomed Eng Online; 2010 Aug; 9():42. PubMed ID: 20807440
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of the NEDO implantable ventricular assist device with Gyro centrifugal pump.
    Yoshikawa M; Nonaka K; Linneweber J; Kawahito S; Ohtsuka G; Nakata K; Takano T; Schulte-Eistrup S; Glueck J; Schima H; Wolner E; Nosé Y
    Artif Organs; 2000 Jun; 24(6):459-67. PubMed ID: 10886066
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical investigation on hydrodynamics and biocompatibility of a magnetically suspended axial blood pump.
    Zhu X; Zhang M; Zhang G; Liu H
    ASAIO J; 2006; 52(6):624-9. PubMed ID: 17117050
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of fluid viscoelasticity on the performance of an axial blood pump model.
    Hu QH; Li JY; Zhang MY
    ASAIO J; 2012; 58(1):32-9. PubMed ID: 22210649
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational Fluid-Structure Interaction Study of a New Wave Membrane Blood Pump.
    Martinolli M; Cornat F; Vergara C
    Cardiovasc Eng Technol; 2022 Jun; 13(3):373-392. PubMed ID: 34773241
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of Lorentz force-type self-bearing motor for an alternative axial flow blood pump design.
    Lim TM; Zhang D
    Artif Organs; 2006 May; 30(5):347-53. PubMed ID: 16683951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impeller-pump model derived from conservation laws applied to the simulation of the cardiovascular system coupled to heart-assist pumps.
    Shi Y; Korakianitis T
    Comput Biol Med; 2018 Feb; 93():127-138. PubMed ID: 29304409
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The design modification of advanced ventricular assist device to enhance pulse augmentation and regurgitant flow shut-off.
    Miyamoto T; Byram N; Karimov JH; Adams J; Dessoffy R; Kuban BD; Gao S; Horvath DJ; Fukamachi K
    Artif Organs; 2019 Oct; 43(10):961-965. PubMed ID: 31070800
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of floating impeller phenomena in a Gyro centrifugal pump.
    Nishimura I; Ichikawa S; Mikami M; Ishitoya H; Motomura T; Kawamura M; Linneweber J; Glueck J; Shinohara T; Nosé Y
    Biomed Mater Eng; 2013; 23(1-2):49-55. PubMed ID: 23442236
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolving trends in mechanical circulatory support: Clinical development of a fully magnetically levitated durable ventricular assist device.
    Sidhu K; Lam PH; Mehra MR
    Trends Cardiovasc Med; 2020 May; 30(4):223-229. PubMed ID: 31201005
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical solution for blood flow in a centrifugal ventricular assist device.
    Wood HG; Anderson J; Allaire PE; McDaniel JC; Bearnson G
    Int J Artif Organs; 1999 Dec; 22(12):827-36. PubMed ID: 10654880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluid dynamic characterization of operating conditions for continuous flow blood pumps.
    Wu ZJ; Antaki JF; Burgreen GW; Butler KC; Thomas DC; Griffith BP
    ASAIO J; 1999; 45(5):442-9. PubMed ID: 10503623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Long-term animal experiments with an intraventricular axial flow blood pump.
    Yamazaki K; Kormos RL; Litwak P; Tagusari O; Mori T; Antaki JF; Kameneva M; Watach M; Gordon L; Mukuo H; Umezu M; Tomioka J; Outa E; Griffith BP; Koyanagai H
    ASAIO J; 1997; 43(5):M696-700. PubMed ID: 9360136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cavopulmonary assist for the univentricular Fontan circulation: von Kármán viscous impeller pump.
    Rodefeld MD; Coats B; Fisher T; Giridharan GA; Chen J; Brown JW; Frankel SH
    J Thorac Cardiovasc Surg; 2010 Sep; 140(3):529-36. PubMed ID: 20561640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Non-parametric dynamical estimation of blood flow rate, pressure difference and viscosity for a miniaturized blood pump.
    Elenkov M; Lukitsch B; Ecker P; Janeczek C; Harasek M; Gföhler M
    Int J Artif Organs; 2022 Feb; 45(2):207-215. PubMed ID: 34399589
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Systematic Design of a Magnetically Levitated Brushless DC Motor for a Reversible Rotary Intra-Aortic Blood Pump.
    Wang Y; Logan TG; Smith PA; Hsu PL; Cohn WE; Xu L; McMahon RA
    Artif Organs; 2017 Oct; 41(10):923-933. PubMed ID: 28929512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flow characteristics of continuous-flow left ventricular assist devices in a novel open-loop system.
    Stanfield JR; Selzman CH; Pardyjak ER; Bamberg S
    ASAIO J; 2012; 58(6):590-6. PubMed ID: 22990285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.