These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35858310)

  • 61. Hemodynamic performance of a compact centrifugal left ventricular assist device with fully magnetic levitation under pulsatile operation: An in vitro study.
    Wu T; Lin H; Zhu Y; Huang P; Lin F; Chen C; Hsu PL
    Proc Inst Mech Eng H; 2020 Nov; 234(11):1235-1242. PubMed ID: 32650694
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Numerical study of a centrifugal blood pump with different impeller profiles.
    Song G; Chua LP; Lim TM
    ASAIO J; 2010; 56(1):24-9. PubMed ID: 20019595
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Increasing the transmitted flow pulse in a rotary left ventricular assist device.
    Gaddum NR; Fraser JF; Timms DL
    Artif Organs; 2012 Oct; 36(10):859-67. PubMed ID: 22845793
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An improved design of axially driven permanent maglev centrifugal pump with streamlined impeller.
    Qian KX; Zeng P; Ru WM; Yuan HY
    J Med Eng Technol; 2007; 31(3):170-4. PubMed ID: 17454404
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.
    Qian KX
    Cardiovasc Eng; 2007 Mar; 7(1):39-42. PubMed ID: 17380386
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bacteria-inspired magnetically actuated rod-like soft robot in viscous fluids.
    Bhattacharjee A; Jabbarzadeh M; Kararsiz G; Fu HC; Kim MJ
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35926485
    [TBL] [Abstract][Full Text] [Related]  

  • 67. PIV measurements of flow in a centrifugal blood pump: steady flow.
    Day SW; McDaniel JC
    J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An implantable centrifugal blood pump for long term circulatory support.
    Yamazaki K; Litwak P; Kormos RL; Mori T; Tagusari O; Antaki JF; Kameneva M; Watach M; Gordon L; Umezu M; Tomioka J; Koyanagi H; Griffith BP
    ASAIO J; 1997; 43(5):M686-91. PubMed ID: 9360134
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Investigating the impact of non-Newtonian blood models within a heart pump.
    Al-Azawy MG; Turan A; Revell A
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26919069
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An experimental study of Newtonian and non-Newtonian flow dynamics in an axial blood pump model.
    Hu QH; Li JY; Zhang MY; Zhu XR
    Artif Organs; 2012 Apr; 36(4):429-33. PubMed ID: 21995643
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.
    Su B; Chua LP; Lim TM; Zhou T
    Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biohybrid valveless pump-bot powered by engineered skeletal muscle.
    Li Z; Seo Y; Aydin O; Elhebeary M; Kamm RD; Kong H; Saif MTA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1543-1548. PubMed ID: 30635415
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Feasibility of using piezohydraulic pumps as motors for pediatric ventricular assist devices.
    Valdovinos J; Levi DS; Williams R; Carman GP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5590-4. PubMed ID: 23367196
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluation of floating impeller phenomena in a gyro centrifugal pump.
    Nishimura I; Ichikawa S; Mikami M; Ishitoya H; Motomura T; Kawamura M; Linneweber J; Glueck J; Shinohara T; Nosé Y; Nishimura I
    ASAIO J; 2003; 49(6):744-7. PubMed ID: 14655746
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fluid dynamics aspects of miniaturized axial-flow blood pump.
    Kang C; Huang Q; Li Y
    Biomed Mater Eng; 2014; 24(1):723-9. PubMed ID: 24211957
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps.
    Zhang J; Chen Z; Griffith BP; Wu ZJ
    Int J Artif Organs; 2020 Oct; 43(10):653-662. PubMed ID: 32043405
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device.
    Song X; Untaroiu A; Wood HG; Allaire PE; Throckmorton AL; Day SW; Olsen DB
    ASAIO J; 2004; 50(3):215-24. PubMed ID: 15171472
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gap Flow Simulation Methods in High Pressure Variable Displacement Axial Piston Pumps.
    Zawistowski T; Kleiber M
    Arch Comput Methods Eng; 2017; 24(3):519-542. PubMed ID: 29962829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.