These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 35858340)

  • 1. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast
    Cai P; Wu X; Deng J; Gao L; Shen Y; Yao L; Zhou YJ
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2201711119. PubMed ID: 35858340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast.
    Zhai X; Gao J; Li Y; Grininger M; Zhou YJ
    Proc Natl Acad Sci U S A; 2023 Mar; 120(12):e2220816120. PubMed ID: 36913588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Pichia pastoris for malic acid production from methanol.
    Guo F; Dai Z; Peng W; Zhang S; Zhou J; Ma J; Dong W; Xin F; Zhang W; Jiang M
    Biotechnol Bioeng; 2021 Jan; 118(1):357-371. PubMed ID: 32965690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris.
    Yamada R; Ogura K; Kimoto Y; Ogino H
    World J Microbiol Biotechnol; 2019 Feb; 35(2):37. PubMed ID: 30715602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economical production of Pichia pastoris single cell protein from methanol at industrial pilot scale.
    Meng J; Liu S; Gao L; Hong K; Liu S; Wu X
    Microb Cell Fact; 2023 Sep; 22(1):198. PubMed ID: 37770920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris.
    Cai P; Duan X; Wu X; Gao L; Ye M; Zhou YJ
    Nucleic Acids Res; 2021 Jul; 49(13):7791-7805. PubMed ID: 34197615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris.
    Guo F; Qiao Y; Xin F; Zhang W; Jiang M
    Trends Biotechnol; 2023 Aug; 41(8):1066-1079. PubMed ID: 36967258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.
    Zhou YJ; Buijs NA; Zhu Z; Qin J; Siewers V; Nielsen J
    Nat Commun; 2016 May; 7():11709. PubMed ID: 27222209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha.
    Zhai X; Ji L; Gao J; Zhou YJ
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8761-8769. PubMed ID: 34748038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable production and application of Pichia pastoris whole cell catalysts expressing human cytochrome P450 2C9.
    Garrigós-Martínez J; Weninger A; Montesinos-Seguí JL; Schmid C; Valero F; Rinnofner C; Glieder A; Garcia-Ortega X
    Microb Cell Fact; 2021 Apr; 20(1):90. PubMed ID: 33902608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1.
    Ravin NV; Eldarov MA; Kadnikov VV; Beletsky AV; Schneider J; Mardanova ES; Smekalova EM; Zvereva MI; Dontsova OA; Mardanov AV; Skryabin KG
    BMC Genomics; 2013 Nov; 14():837. PubMed ID: 24279325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol.
    Gao J; Li Y; Yu W; Zhou YJ
    Nat Metab; 2022 Jul; 4(7):932-943. PubMed ID: 35817856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures.
    Jordà J; Jouhten P; Cámara E; Maaheimo H; Albiol J; Ferrer P
    Microb Cell Fact; 2012 May; 11():57. PubMed ID: 22569166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Methanol Utilization by Reducing Alcohol Oxidase Activity and Adding Co-Substrate of Sodium Citrate in
    Liu S; Dong H; Hong K; Meng J; Lin L; Wu X
    J Fungi (Basel); 2023 Mar; 9(4):. PubMed ID: 37108877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous protein production in methylotrophic yeasts.
    Gellissen G
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):741-50. PubMed ID: 11152064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplex Marker-Less Genome Integration in Pichia pastoris Using CRISPR/Cas9.
    Gao J; Cheng J; Lian J
    Methods Mol Biol; 2024; 2760():157-167. PubMed ID: 38468088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement.
    Chung BK; Selvarasu S; Andrea C; Ryu J; Lee H; Ahn J; Lee H; Lee DY
    Microb Cell Fact; 2010 Jul; 9():50. PubMed ID: 20594333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dextranase production by recombinant
    Muñoz MAM; Jáuregui Rincón J; Carreón LS; Chávez Vela NA
    Prep Biochem Biotechnol; 2019; 49(6):606-615. PubMed ID: 30929565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review.
    Yang Z; Zhang Z
    Biotechnol Adv; 2018; 36(1):182-195. PubMed ID: 29129652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of Methanol into Value-added Chemicals in Native and Synthetic Methylotrophs.
    Zhang M; Yuan XJ; Zhang C; Zhu LP; Mo XH; Chen WJ; Yang S
    Curr Issues Mol Biol; 2019; 33():225-236. PubMed ID: 31166195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.