These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35858419)

  • 21. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth.
    Zhang Y; Silva DM; Young P; Traini D; Li M; Ong HX; Cheng S
    Biotechnol Bioeng; 2022 Jun; 119(6):1483-1497. PubMed ID: 35274289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system.
    Stoodley P; Dodds I; De Beer D; Scott HL; Boyle JD
    Biofouling; 2005; 21(3-4):161-8. PubMed ID: 16371336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real time monitoring of biofilm development under flow conditions in porous media.
    Bozorg A; Gates ID; Sen A
    Biofouling; 2012; 28(9):937-51. PubMed ID: 22963147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A bilayer coarse-fine infiltration system minimizes bioclogging: The relevance of depth-dynamics.
    Perujo N; Romaní AM; Sanchez-Vila X
    Sci Total Environ; 2019 Jun; 669():559-569. PubMed ID: 30889445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid formation of bioaggregates and morphology transition to biofilm streamers induced by pore-throat flows.
    Lee SH; Secchi E; Kang PK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2204466120. PubMed ID: 36989304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biofilm streamer growth dynamics in various microfluidic channels.
    Zhang J; Dong F; Liu S; Zhang D; Wang X
    Can J Microbiol; 2022 May; 68(5):367-375. PubMed ID: 35100043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale.
    Scheidweiler D; Miele F; Peter H; Battin TJ; de Anna P
    J R Soc Interface; 2020 Mar; 17(164):20200046. PubMed ID: 32208823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.
    Liu S; Gunawan C; Barraud N; Rice SA; Harry EJ; Amal R
    Environ Sci Technol; 2016 Sep; 50(17):8954-76. PubMed ID: 27479445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of Biofilm Aging and Dispersal in
    Bartolini M; Cogliati S; Vileta D; Bauman C; Rateni L; Leñini C; Argañaraz F; Francisco M; Villalba JM; Steil L; Völker U; Grau R
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of a microbial growth experiment with bioclogging in a two-dimensional saturated porous media flow field.
    Thullner M; Schroth MH; Zeyer J; Kinzelbach W
    J Contam Hydrol; 2004 May; 70(1-2):37-62. PubMed ID: 15068868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Axenic Biofilm Formation and Aggregation by
    Allen R; Rittmann BE; Curtiss R
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of fluid flow conditions on interactions between species in biofilms.
    Zhang W; Sileika T; Packman AI
    FEMS Microbiol Ecol; 2013 May; 84(2):344-54. PubMed ID: 23278485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of biofilms on the mobility of bare and capped zinc oxide nanoparticles in saturated sand and glass beads.
    Kurlanda-Witek H; Ngwenya BT; Butler IB
    J Contam Hydrol; 2015 Aug; 179():160-70. PubMed ID: 26140853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and evaluation of an experimental protocol for 3-D visualization and characterization of the structure of bacterial biofilms in porous media using laboratory X-ray tomography.
    Ivankovic T; Rolland du Roscoat S; Geindreau C; Séchet P; Huang Z; Martins JM
    Biofouling; 2016 Nov; 32(10):1235-1244. PubMed ID: 27827532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems.
    Drescher K; Shen Y; Bassler BL; Stone HA
    Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4345-50. PubMed ID: 23401501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels.
    Liu N; Skauge T; Landa-Marbán D; Hovland B; Thorbjørnsen B; Radu FA; Vik BF; Baumann T; Bødtker G
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):855-868. PubMed ID: 30874983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards optimum permeability reduction in porous media using biofilm growth simulations.
    Pintelon TR; Graf von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2009 Jul; 103(4):767-79. PubMed ID: 19309753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Study on the influence of bioclogging on permeability of saturated porous media by experiments and models].
    Yang J; Ye SJ; Wu JC
    Huan Jing Ke Xue; 2011 May; 32(5):1364-71. PubMed ID: 21780592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.