These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 35858425)

  • 1. Mitochondrial genome undergoes de novo DNA methylation that protects mtDNA against oxidative damage during the peri-implantation window.
    Yue Y; Ren L; Zhang C; Miao K; Tan K; Yang Q; Hu Y; Xi G; Luo G; Yang M; Zhang J; Hou Z; An L; Tian J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2201168119. PubMed ID: 35858425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria.
    Shock LS; Thakkar PV; Peterson EJ; Moran RG; Taylor SM
    Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3630-5. PubMed ID: 21321201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b.
    Hsieh CL
    Mol Cell Biol; 1999 Dec; 19(12):8211-8. PubMed ID: 10567546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B.
    Andrews S; Krueger C; Mellado-Lopez M; Hemberger M; Dean W; Perez-Garcia V; Hanna CW
    Nat Commun; 2023 Jan; 14(1):371. PubMed ID: 36690623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liver-specific deletion of de novo DNA methyltransferases protects against glucose intolerance in high-fat diet-fed male mice.
    Yao S; Prates K; Freydenzon A; Assante G; McRae AF; Morris MJ; Youngson NA
    FASEB J; 2024 May; 38(10):e23690. PubMed ID: 38795327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mitochondrial DNA is extensively methylated in a non-CpG context.
    Patil V; Cuenin C; Chung F; Aguilera JRR; Fernandez-Jimenez N; Romero-Garmendia I; Bilbao JR; Cahais V; Rothwell J; Herceg Z
    Nucleic Acids Res; 2019 Nov; 47(19):10072-10085. PubMed ID: 31665742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.
    Okano M; Bell DW; Haber DA; Li E
    Cell; 1999 Oct; 99(3):247-57. PubMed ID: 10555141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution profiles of gene expression and DNA methylation highlight mitochondrial modifications during early embryonic development.
    Ren L; Zhang C; Tao L; Hao J; Tan K; Miao K; Yu Y; Sui L; Wu Z; Tian J; An L
    J Reprod Dev; 2017 Jun; 63(3):247-261. PubMed ID: 28367907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide DNA Methylation Signatures Are Determined by DNMT3A/B Sequence Preferences.
    Mao SQ; Cuesta SM; Tannahill D; Balasubramanian S
    Biochemistry; 2020 Jul; 59(27):2541-2550. PubMed ID: 32543182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methyltransferases 3A and 3B target specific sequences during mouse gastrulation.
    Mukamel Z; Lifshitz A; Mittnenzweig M; Chomsky E; Schwartzman O; Ben-Kiki O; Zerbib M; Tanay A
    Nat Struct Mol Biol; 2022 Dec; 29(12):1252-1265. PubMed ID: 36510023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo.
    Richard Albert J; Au Yeung WK; Toriyama K; Kobayashi H; Hirasawa R; Brind'Amour J; Bogutz A; Sasaki H; Lorincz M
    Nat Commun; 2020 Oct; 11(1):5417. PubMed ID: 33110091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells.
    Fukuda A; Hazelbaker DZ; Motosugi N; Hao J; Limone F; Beccard A; Mazzucato P; Messana A; Okada C; San Juan IG; Qian M; Umezawa A; Akutsu H; Barrett LE; Eggan K
    Stem Cell Reports; 2021 Sep; 16(9):2138-2148. PubMed ID: 34416176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern.
    Bellizzi D; D'Aquila P; Scafone T; Giordano M; Riso V; Riccio A; Passarino G
    DNA Res; 2013 Dec; 20(6):537-47. PubMed ID: 23804556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development.
    Yagi M; Kabata M; Tanaka A; Ukai T; Ohta S; Nakabayashi K; Shimizu M; Hata K; Meissner A; Yamamoto T; Yamada Y
    Nat Commun; 2020 Jun; 11(1):3199. PubMed ID: 32581223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mediating and maintaining methylation while minimizing mutation: Recent advances on mammalian DNA methyltransferases.
    Cheng X; Blumenthal RM
    Curr Opin Struct Biol; 2022 Aug; 75():102433. PubMed ID: 35914495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density.
    Barrès R; Osler ME; Yan J; Rune A; Fritz T; Caidahl K; Krook A; Zierath JR
    Cell Metab; 2009 Sep; 10(3):189-98. PubMed ID: 19723495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dnmt3a deficiency in the skin causes focal, canonical DNA hypomethylation and a cellular proliferation phenotype.
    Chen DY; Ferguson IM; Braun KA; Sutton LA; Helton NM; Ramakrishnan SM; Smith AM; Miller CA; Ley TJ
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33846253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo DNA methylation during monkey pre-implantation embryogenesis.
    Gao F; Niu Y; Sun YE; Lu H; Chen Y; Li S; Kang Y; Luo Y; Si C; Yu J; Li C; Sun N; Si W; Wang H; Ji W; Tan T
    Cell Res; 2017 Apr; 27(4):526-539. PubMed ID: 28233770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers.
    Chen K; Lu P; Beeraka NM; Sukocheva OA; Madhunapantula SV; Liu J; Sinelnikov MY; Nikolenko VN; Bulygin KV; Mikhaleva LM; Reshetov IV; Gu Y; Zhang J; Cao Y; Somasundaram SG; Kirkland CE; Fan R; Aliev G
    Semin Cancer Biol; 2022 Aug; 83():556-569. PubMed ID: 33035656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular characterisation of mitochondrial DNA deficient oocytes using a pig model.
    Tsai TS; Tyagi S; St John JC
    Hum Reprod; 2018 May; 33(5):942-953. PubMed ID: 29546367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.