These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35859524)

  • 21. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile Film-Nanoctahedron Assembly Route to Plasmonic Metamaterial Absorbers at Visible Frequencies.
    Zhang H; Guan C; Luo J; Yuan Y; Song N; Zhang Y; Fang J; Liu H
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20241-20248. PubMed ID: 31083897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. All-Silicon Ultra-Broadband Infrared Light Absorbers.
    Gorgulu K; Gok A; Yilmaz M; Topalli K; Bıyıklı N; Okyay AK
    Sci Rep; 2016 Dec; 6():38589. PubMed ID: 27924933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wide-incident-angle, polarization-independent broadband-absorption metastructure without external resistive elements by using a trapezoidal structure.
    Pham TS; Zheng H; Chen L; Khuyen BX; Lee Y
    Sci Rep; 2024 May; 14(1):10198. PubMed ID: 38702324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband near-infrared TiO
    Zhu Y; Lan T; Liu P; Yang J
    Appl Opt; 2019 Sep; 58(26):7134-7138. PubMed ID: 31503985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Super broadband mid-infrared absorbers with ultrathin folded highly-lossy films.
    Zhang H; Wu H; Li X; Hao J; Li Q; Guan Z; Xu H; Liu C
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):254-262. PubMed ID: 36155920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Broadband Perfect Optical Absorption by Coupled Semiconductor Resonator-Based All-Dielectric Metasurface.
    Weng Z; Guo Y
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polarization-sensitive perfect absorbers at near-infrared wavelengths.
    Meng L; Zhao D; Li Q; Qiu M
    Opt Express; 2013 Jan; 21 Suppl 1():A111-22. PubMed ID: 23389262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.
    Tagliabue G; Eghlidi H; Poulikakos D
    Sci Rep; 2014 Nov; 4():7181. PubMed ID: 25418040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion.
    Kim JU; Lee S; Kang SJ; Kim TI
    Nanoscale; 2018 Nov; 10(46):21555-21574. PubMed ID: 30431040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric-Semiconductor-Lossy Metal Film Stacks.
    Ma Y; Hu J; Li W; Yang Z
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach.
    Ding F; Wang Z; He S; Shalaev VM; Kildishev AV
    ACS Nano; 2015 Apr; 9(4):4111-9. PubMed ID: 25790895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple Stepwise Synthetic Pathways toward Complex Plasmonic 2D and 3D Nanoframes for Generation of Electromagnetic Hot Zones in a Single Entity.
    Jung I; Kim J; Lee S; Park W; Park S
    Acc Chem Res; 2023 Feb; 56(3):270-283. PubMed ID: 36693060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic wavy surface for ultrathin semiconductor black absorbers.
    Tang P; Liu G; Liu X; Fu G; Liu Z; Wang J
    Opt Express; 2020 Sep; 28(19):27764-27773. PubMed ID: 32988062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tungsten-based Ultrathin Absorber for Visible Regime.
    Rana AS; Mehmood MQ; Jeong H; Kim I; Rho J
    Sci Rep; 2018 Feb; 8(1):2443. PubMed ID: 29403065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced broadband absorption in gold by plasmonic tapered coaxial holes.
    Mo L; Yang L; Nadzeyka A; Bauerdick S; He S
    Opt Express; 2014 Dec; 22(26):32233-44. PubMed ID: 25607189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-broadband metamaterial absorbers from long to very long infrared regime.
    Zhou Y; Qin Z; Liang Z; Meng D; Xu H; Smith DR; Liu Y
    Light Sci Appl; 2021 Jul; 10(1):138. PubMed ID: 34226489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.
    Liu D; Yu H; Duan Y; Li Q; Xuan Y
    Sci Rep; 2016 Sep; 6():32515. PubMed ID: 27582317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.