BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3585982)

  • 1. Kinetic study on the equilibrium between membrane-bound and free photoreceptor G-protein.
    Schleicher A; Hofmann KP
    J Membr Biol; 1987; 95(3):271-81. PubMed ID: 3585982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II.
    Schleicher A; Kühn H; Hofmann KP
    Biochemistry; 1989 Feb; 28(4):1770-5. PubMed ID: 2719933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of G-protein activation in photoreceptor membranes. Transient extra metarhodopsin II on bovine disk membranes.
    Kohl B; Hofmann KP
    Biophys J; 1987 Aug; 52(2):271-7. PubMed ID: 3117126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The G-protein of retinal rod outer segments (transducin). Mechanism of interaction with rhodopsin and nucleotides.
    Bennett N; Dupont Y
    J Biol Chem; 1985 Apr; 260(7):4156-68. PubMed ID: 3920215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved.
    Bennett N; Michel-Villaz M; Kühn H
    Eur J Biochem; 1982 Sep; 127(1):97-103. PubMed ID: 6291939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between hydroxylamine, metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes.
    Hofmann KP; Emeis D; Schnetkamp PP
    Biochim Biophys Acta; 1983 Oct; 725(1):60-70. PubMed ID: 6313051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action of monoclonal antibodies that block the light activation of the guanyl nucleotide-binding protein, transducin.
    Hamm HE; Deretic D; Hofmann KP; Schleicher A; Kohl B
    J Biol Chem; 1987 Aug; 262(22):10831-8. PubMed ID: 2440875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfhydryl group modification of photoreceptor G-protein prevents its light-induced binding to rhodopsin.
    Reichert J; Hofmann KP
    FEBS Lett; 1984 Mar; 168(1):121-4. PubMed ID: 6705917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes.
    Kühn H; Bennett N; Michel-Villaz M; Chabre M
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6873-7. PubMed ID: 6273893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of GTP on the rhodopsin-G-protein complex by transient formation of extra metarhodopsin II.
    Hofmann KP
    Biochim Biophys Acta; 1985 Nov; 810(2):278-81. PubMed ID: 3933561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes.
    Emeis D; Hofmann KP
    FEBS Lett; 1981 Dec; 136(2):201-7. PubMed ID: 7327258
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-induced interaction between rhodopsin and GTP-binding protein leads to the hydrolysis of GTP in the rod outer segment.
    Gupta BD; Borys TJ; Deshpande S; Jones RE; Abrahamson EW
    Biochem Cell Biol; 1986 Apr; 64(4):304-8. PubMed ID: 3087387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation.
    Pulvermüller A; Palczewski K; Hofmann KP
    Biochemistry; 1993 Dec; 32(51):14082-8. PubMed ID: 8260489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1988 Aug; 235(1-2):103-8. PubMed ID: 3136032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cGMP- and phosphodiesterase-dependent light-scattering changes in rod disk membrane vesicles: relationship to disk vesicle-disk vesicle aggregation.
    Caretta A; Stein PJ
    Biochemistry; 1985 Sep; 24(20):5685-92. PubMed ID: 3000435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH; Gibson SK; Liebman PA
    Biochemistry; 1999 May; 38(21):6862-78. PubMed ID: 10346908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G-protein-effector coupling: a real-time light-scattering assay for transducin-phosphodiesterase interaction.
    Heck M; Hofmann KP
    Biochemistry; 1993 Aug; 32(32):8220-7. PubMed ID: 8394130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium.
    Emeis D; Kühn H; Reichert J; Hofmann KP
    FEBS Lett; 1982 Jun; 143(1):29-34. PubMed ID: 6288450
    [No Abstract]   [Full Text] [Related]  

  • 20. Light- and nucleotide-dependent binding of phosphodiesterase to rod disk membranes: correlation with light-scattering changes and vesicle aggregation.
    Caretta A; Stein PJ
    Biochemistry; 1986 May; 25(9):2335-41. PubMed ID: 3013302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.