These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35859851)

  • 41. Arctic air pollution: origins and impacts.
    Law KS; Stohl A
    Science; 2007 Mar; 315(5818):1537-40. PubMed ID: 17363665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo.
    Betts RA
    Nature; 2000 Nov; 408(6809):187-90. PubMed ID: 11089969
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of Central Tibet.
    Ming J; Wang P; Zhao S; Chen P
    J Environ Sci (China); 2013 Aug; 25(8):1601-7. PubMed ID: 24520698
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The dependence of the ice-albedo feedback on atmospheric properties.
    von Paris P; Selsis F; Kitzmann D; Rauer H
    Astrobiology; 2013 Oct; 13(10):899-909. PubMed ID: 24111995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Black carbon and dust alter the response of mountain snow cover under climate change.
    Réveillet M; Dumont M; Gascoin S; Lafaysse M; Nabat P; Ribes A; Nheili R; Tuzet F; Ménégoz M; Morin S; Picard G; Ginoux P
    Nat Commun; 2022 Sep; 13(1):5279. PubMed ID: 36127334
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Observational determination of albedo decrease caused by vanishing Arctic sea ice.
    Pistone K; Eisenman I; Ramanathan V
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3322-6. PubMed ID: 24550469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anthropogenic influence on surface changes at the Olivares glaciers; Central Chile.
    Barandun M; Bravo C; Grobety B; Jenk T; Fang L; Naegeli K; Rivera A; Cisternas S; Münster T; Schwikowski M
    Sci Total Environ; 2022 Aug; 833():155068. PubMed ID: 35413346
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An ecologic study comparing distribution of Pasteurella trehalosi and Mannheimia haemolytica between Sierra Nevada bighorn sheep, White Mountain bighorn sheep, and domestic sheep.
    Tomassini L; Gonzales B; Weiser GC; Sischo W
    J Wildl Dis; 2009 Oct; 45(4):930-40. PubMed ID: 19901369
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mountain snowpack response to different levels of warming.
    Huning LS; AghaKouchak A
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):10932-10937. PubMed ID: 30297423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Black carbon radiative forcing at TOA decreased during aging.
    Wu Y; Cheng T; Zheng L; Chen H
    Sci Rep; 2016 Dec; 6():38592. PubMed ID: 27917943
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Irrigation and warming drive the decreases in surface albedo over High Mountain Asia.
    Maina FZ; Kumar SV; Gangodagamage C
    Sci Rep; 2022 Sep; 12(1):16163. PubMed ID: 36171251
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment of aerosols optical properties and radiative forcing over an Urban site in North-Western India.
    Mor V; Dhankhar R; Attri SD; Soni VK; Sateesh M; Taneja K
    Environ Technol; 2017 May; 38(10):1232-1244. PubMed ID: 27564392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data.
    Wang Z; Erb AM; Schaaf CB; Sun Q; Liu Y; Yang Y; Shuai Y; Casey KA; Román MO
    Remote Sens Environ; 2016 Nov; 185():71-83. PubMed ID: 29769751
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Black carbon over a central Himalayan Glacier (Satopanth): Pathways and direct radiative impacts.
    Panicker AS; Sandeep K; Gautam AS; Trimbake HK; Nainwal HC; Beig G; Bisht DS; Das S
    Sci Total Environ; 2021 Apr; 766():144242. PubMed ID: 33412434
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Boreal forests, aerosols and the impacts on clouds and climate.
    Spracklen DV; Bonn B; Carslaw KS
    Philos Trans A Math Phys Eng Sci; 2008 Dec; 366(1885):4613-26. PubMed ID: 18826917
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temporal variation of aerosol optical depth and associated shortwave radiative forcing over a coastal site along the west coast of India.
    Menon HB; Shirodkar S; Kedia S; S R; Babu S; Moorthy KK
    Sci Total Environ; 2014 Jan; 468-469():83-92. PubMed ID: 24012896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Response of vegetation carbon uptake to snow-induced phenological and physiological changes across temperate China.
    Chen S; Huang Y; Wang G
    Sci Total Environ; 2019 Nov; 692():188-200. PubMed ID: 31349162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Black carbon and other light-absorbing impurities in snow in the Chilean Andes.
    Rowe PM; Cordero RR; Warren SG; Stewart E; Doherty SJ; Pankow A; Schrempf M; Casassa G; Carrasco J; Pizarro J; MacDonell S; Damiani A; Lambert F; Rondanelli R; Huneeus N; Fernandoy F; Neshyba S
    Sci Rep; 2019 Mar; 9(1):4008. PubMed ID: 30850621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA.
    Curtis JA; Flint LE; Flint AL; Lundquist JD; Hudgens B; Boydston EE; Young JK
    PLoS One; 2014; 9(9):e106984. PubMed ID: 25188379
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.
    Cheng T; Wu Y; Chen H
    Opt Express; 2014 Jun; 22(13):15904-17. PubMed ID: 24977845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.