These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35859907)

  • 1. Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition.
    Karlsson L; Baccarini A; Duplessis P; Baumgardner D; Brooks IM; Chang RY; Dada L; Dällenbach KR; Heikkinen L; Krejci R; Leaitch WR; Leck C; Partridge DG; Salter ME; Wernli H; Wheeler MJ; Schmale J; Zieger P
    J Geophys Res Atmos; 2022 Jun; 127(11):e2021JD036383. PubMed ID: 35859907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Novel Molecular-Level Chemical Composition Observations of High Arctic Organic Aerosol for Predictions of Cloud Condensation Nuclei.
    Siegel K; Neuberger A; Karlsson L; Zieger P; Mattsson F; Duplessis P; Dada L; Daellenbach K; Schmale J; Baccarini A; Krejci R; Svenningsson B; Chang R; Ekman AML; Riipinen I; Mohr C
    Environ Sci Technol; 2022 Oct; 56(19):13888-13899. PubMed ID: 36112784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation.
    Fanourgakis GS; Kanakidou M; Nenes A; Bauer SE; Bergman T; Carslaw KS; Grini A; Hamilton DS; Johnson JS; Karydis VA; Kirkevåg A; Kodros JK; Lohmann U; Luo G; Makkonen R; Matsui H; Neubauer D; Pierce JR; Schmale J; Stier P; Tsigaridis K; van Noije T; Wang H; Watson-Parris D; Westervelt DM; Yang Y; Yoshioka M; Daskalakis N; Decesari S; Gysel-Beer M; Kalivitis N; Liu X; Mahowald NM; Myriokefalitakis S; Schrödner R; Sfakianaki M; Tsimpidi AP; Wu M; Yu F
    Atmos Chem Phys; 2019 Jul; 19(13):8591-8617. PubMed ID: 33273898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions.
    Baccarini A; Karlsson L; Dommen J; Duplessis P; Vüllers J; Brooks IM; Saiz-Lopez A; Salter M; Tjernström M; Baltensperger U; Zieger P; Schmale J
    Nat Commun; 2020 Oct; 11(1):4924. PubMed ID: 33004812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid growth of Aitken-mode particles during Arctic summer by fog chemical processing and its implication.
    Kecorius S; Hoffmann EH; Tilgner A; Barrientos-Velasco C; van Pinxteren M; Zeppenfeld S; Vogl T; Madueño L; Lovrić M; Wiedensohler A; Kulmala M; Paasonen P; Herrmann H
    PNAS Nexus; 2023 May; 2(5):pgad124. PubMed ID: 37152675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds.
    Zamora LM; Kahn RA; Eckhardt S; McComiskey A; Sawamura P; Moore R; Stohl A
    Atmos Chem Phys; 2017 Jun; 17(12):7311-7332. PubMed ID: 32849860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of small aerosol particles on the properties of water and ice clouds.
    Choularton TW; Bower KN; Weingartner E; Crawford I; Coe H; Gallagher MW; Flynn M; Crosier J; Connolly P; Targino A; Alfarra MR; Baltensperger U; Sjogren S; Verheggen B; Cozic J; Gysel M
    Faraday Discuss; 2008; 137():205-22; discussion 297-318. PubMed ID: 18214105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations.
    Schulze BC; Charan SM; Kenseth CM; Kong W; Bates KH; Williams W; Metcalf AR; Jonsson HH; Woods R; Sorooshian A; Flagan RC; Seinfeld JH
    Earth Space Sci; 2020 Jul; 7(7):e2020EA001098. PubMed ID: 33225018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II.
    Zelenyuk A; Imre D; Earle M; Easter R; Korolev A; Leaitch R; Liu P; Macdonald AM; Ovchinnikov M; Strapp W
    Anal Chem; 2010 Oct; 82(19):7943-51. PubMed ID: 20718425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the molecular composition of semi-volatile aerosols in the summertime central Arctic Ocean using FIGAERO-CIMS.
    Siegel K; Karlsson L; Zieger P; Baccarini A; Schmale J; Lawler M; Salter M; Leck C; Ekman AML; Riipinen I; Mohr C
    Environ Sci Atmos; 2021 May; 1(4):161-175. PubMed ID: 34278305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry.
    Hao L; Romakkaniemi S; Kortelainen A; Jaatinen A; Portin H; Miettinen P; Komppula M; Leskinen A; Virtanen A; Smith JN; Sueper D; Worsnop DR; Lehtinen KE; Laaksonen A
    Environ Sci Technol; 2013 Mar; 47(6):2645-53. PubMed ID: 23419193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.
    Kravitz B; Wang H; Rasch PJ; Morrison H; Solomon AB
    Philos Trans A Math Phys Eng Sci; 2014 Dec; 372(2031):. PubMed ID: 25404677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertical Gradient of Size-Resolved Aerosol Compositions over the Arctic Reveals Cloud Processed Aerosol in-Cloud and above Cloud.
    Lata NN; Cheng Z; Dexheimer D; Zhang D; Mei F; China S
    Environ Sci Technol; 2023 Apr; 57(14):5821-5830. PubMed ID: 36971313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of urban aerosols on the cloud condensation activity using a clustering model.
    Rejano F; Casquero-Vera JA; Lyamani H; Andrews E; Casans A; Pérez-Ramírez D; Alados-Arboledas L; Titos G; Olmo FJ
    Sci Total Environ; 2023 Feb; 858(Pt 1):159657. PubMed ID: 36306849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mulitphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol.
    Carlton AG; Christiansen AE; Flesch MM; Hennigan CJ; Sareen N
    Acc Chem Res; 2020 Sep; 53(9):1715-1723. PubMed ID: 32803954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei.
    Fossum KN; Ovadnevaite J; Ceburnis D; Dall'Osto M; Marullo S; Bellacicco M; Simó R; Liu D; Flynn M; Zuend A; O'Dowd C
    Sci Rep; 2018 Sep; 8(1):13844. PubMed ID: 30218089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.
    Adler G; Koop T; Haspel C; Taraniuk I; Moise T; Koren I; Heiblum RH; Rudich Y
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20414-9. PubMed ID: 24297908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A central arctic extreme aerosol event triggered by a warm air-mass intrusion.
    Dada L; Angot H; Beck I; Baccarini A; Quéléver LLJ; Boyer M; Laurila T; Brasseur Z; Jozef G; de Boer G; Shupe MD; Henning S; Bucci S; Dütsch M; Stohl A; Petäjä T; Daellenbach KR; Jokinen T; Schmale J
    Nat Commun; 2022 Sep; 13(1):5290. PubMed ID: 36075920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A marine biogenic source of atmospheric ice-nucleating particles.
    Wilson TW; Ladino LA; Alpert PA; Breckels MN; Brooks IM; Browse J; Burrows SM; Carslaw KS; Huffman JA; Judd C; Kilthau WP; Mason RH; McFiggans G; Miller LA; Nájera JJ; Polishchuk E; Rae S; Schiller CL; Si M; Temprado JV; Whale TF; Wong JP; Wurl O; Yakobi-Hancock JD; Abbatt JP; Aller JY; Bertram AK; Knopf DA; Murray BJ
    Nature; 2015 Sep; 525(7568):234-8. PubMed ID: 26354482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.