These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35859939)

  • 1. Improved representation of atmospheric dynamics in CMIP6 models removes climate sensitivity dependence on Hadley cell climatological extent.
    De B; Tselioudis G; Polvani LM
    Atmos Sci Lett; 2022 Mar; 23(3):e1073. PubMed ID: 35859939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CMIP5 models' shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent.
    Lipat BR; Tselioudis G; Grise KM; Polvani LM
    Geophys Res Lett; 2017 Jun; 44(11):5739-5748. PubMed ID: 32690980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of trends in the Hadley circulation between CMIP6 and CMIP5.
    Xia Y; Hu Y; Liu J
    Sci Bull (Beijing); 2020 Oct; 65(19):1667-1674. PubMed ID: 36659043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models.
    Meehl GA; Senior CA; Eyring V; Flato G; Lamarque JF; Stouffer RJ; Taylor KE; Schlund M
    Sci Adv; 2020 Jun; 6(26):eaba1981. PubMed ID: 32637602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How will southern hemisphere subtropical anticyclones respond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projections.
    Fahad AA; Burls NJ; Strasberg Z
    Clim Dyn; 2020; 55(3):703-718. PubMed ID: 32713996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional Climate Sensitivity of Climate Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles.
    Seneviratne SI; Hauser M
    Earths Future; 2020 Sep; 8(9):e2019EF001474. PubMed ID: 33043069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6.
    Zhu H; Jiang Z; Li L
    Sci Bull (Beijing); 2021 Dec; 66(24):2528-2537. PubMed ID: 36654212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The global energy balance as represented in CMIP6 climate models.
    Wild M
    Clim Dyn; 2020; 55(3):553-577. PubMed ID: 32704207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO.
    McKenna S; Santoso A; Gupta AS; Taschetto AS; Cai W
    Sci Rep; 2020 Jul; 10(1):11500. PubMed ID: 32661240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6.
    Hofer S; Lang C; Amory C; Kittel C; Delhasse A; Tedstone A; Fettweis X
    Nat Commun; 2020 Dec; 11(1):6289. PubMed ID: 33323939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Past warming trend constrains future warming in CMIP6 models.
    Tokarska KB; Stolpe MB; Sippel S; Fischer EM; Smith CJ; Lehner F; Knutti R
    Sci Adv; 2020 Mar; 6(12):eaaz9549. PubMed ID: 32206725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model spread in tropical low cloud feedback tied to overturning circulation response to warming.
    Schiro KA; Su H; Ahmed F; Dai N; Singer CE; Gentine P; Elsaesser GS; Jiang JH; Choi YS; David Neelin J
    Nat Commun; 2022 Nov; 13(1):7119. PubMed ID: 36402770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemispherically asymmetric Hadley cell response to CO
    Kim SY; Choi YJ; Son SW; Grise KM; Staten PW; An SI; Yeh SW; Kug JS; Min SK; Shin J
    Sci Adv; 2023 Jul; 9(30):eadg1801. PubMed ID: 37494441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into recent aerosol trends over Asia from observations and CMIP6 simulations.
    Ramachandran S; Rupakheti M; Cherian R
    Sci Total Environ; 2022 Feb; 807(Pt 1):150756. PubMed ID: 34619211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong Dependence of Atmospheric Feedbacks on Mixed-Phase Microphysics and Aerosol-Cloud Interactions in HadGEM3.
    Bodas-Salcedo A; Mulcahy JP; Andrews T; Williams KD; Ringer MA; Field PR; Elsaesser GS
    J Adv Model Earth Syst; 2019 Jun; 11(6):1735-1758. PubMed ID: 31598189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct observations and climate models.
    Wild M; Hakuba MZ; Folini D; Dörig-Ott P; Schär C; Kato S; Long CN
    Clim Dyn; 2019; 52(7):4787-4812. PubMed ID: 30996525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979-2100).
    Xu Z; Han Y; Tam CY; Yang ZL; Fu C
    Sci Data; 2021 Nov; 8(1):293. PubMed ID: 34737356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercomparison of global terrestrial carbon fluxes estimated by MODIS and Earth system models.
    Hu Q; Li T; Deng X; Wu T; Zhai P; Huang D; Fan X; Zhu Y; Lin Y; Xiao X; Chen X; Zhao X; Wang L; Qin Z
    Sci Total Environ; 2022 Mar; 810():152231. PubMed ID: 34896141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors determining tropical upper-level cloud radiative effect in the radiative-convective equilibrium framework.
    Kang H; Choi YS; Jiang JH
    Sci Rep; 2024 Jun; 14(1):13419. PubMed ID: 38862551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.