BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3585997)

  • 1. Improved preservation of cartilage extracellular matrix by freeze dried embedding.
    Arsenault AL; Spitzer E; Simon GT
    J Microsc; 1987 Mar; 145(Pt 3):357-60. PubMed ID: 3585997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image analysis of the extracellular matrix.
    Arsenault AL; Kohler DM
    Microsc Res Tech; 1994 Aug; 28(5):409-21. PubMed ID: 7919528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ localization of cartilage extracellular matrix components by immunoelectron microscopy after cryotechnical tissue processing.
    Hunziker EB; Herrmann W
    J Histochem Cytochem; 1987 Jun; 35(6):647-55. PubMed ID: 3553318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of hyaline cartilage. I. A comparative study of cartilage from different species and locations, using cryofixation, freeze-substitution and low-temperature embedding techniques.
    Engfeldt B; Hultenby K; Müller M
    Acta Pathol Microbiol Immunol Scand A; 1986 Sep; 94(5):313-23. PubMed ID: 3532690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron microscopic evaluation of the occurrence of matrix vesicles in cartilage.
    Mitchell NS; Shepard NL
    Anat Rec; 1990 Aug; 227(4):397-404. PubMed ID: 2203278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved preservation of the subepidermal extracellular matrix in axolotl embryos using electron microscopical techniques based on cryoimmobilization.
    Epperlein HH; Schwarz H; Piendl T; Löfberg J; Studer D; Spring H; Müller M
    J Struct Biol; 1997 Feb; 118(1):43-61. PubMed ID: 9087914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of freeze substitution on biological electron microscopy.
    Hippe-Sanwald S
    Microsc Res Tech; 1993 Apr; 24(5):400-22. PubMed ID: 8318724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electron microscopic and spectroscopic study of murine epiphyseal cartilage: analysis of fine structure and matrix vesicles preserved by slam freezing and freeze substitution.
    Arsenault AL; Ottensmeyer FP; Heath IB
    J Ultrastruct Mol Struct Res; 1988 Jan; 98(1):32-47. PubMed ID: 3351353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of cryotechniques in cartilage tissue preservation and immunoelectron microscopy: potentials and problems.
    Hunziker EB
    Microsc Res Tech; 1993 Apr; 24(6):457-64. PubMed ID: 8490231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray microanalysis of growth cartilage after rapid freezing, low temperature freeze drying and embedding in resin.
    Appleton J
    Scanning Microsc; 1987 Sep; 1(3):1135-44. PubMed ID: 3310204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryofixation of basement membranes followed by freeze substitution or freeze drying demonstrates that they are composed of a tridimensional network of irregular cords.
    Chan FL; Inoue S; Leblond CP
    Anat Rec; 1993 Feb; 235(2):191-205. PubMed ID: 8420389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysplastic histogenesis of cartilage growth plate by alteration of sulphation pathway: a transgenic model.
    Cornaglia AI; Casasco A; Casasco M; Riva F; Necchi V
    Connect Tissue Res; 2009; 50(4):232-42. PubMed ID: 19637059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved ultrastructural preservation of rat ciliary body after high pressure freezing and freeze substitution: a perspective view based upon comparison with tissue processed according to a conventional protocol or by osmium tetroxide/microwave fixation.
    Eggli ES; Graber W
    Microsc Res Tech; 1994 Sep; 29(1):11-22. PubMed ID: 8000081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-drying and related preparation techniques for biological microprobe analysis.
    Wróblewski R; Wróblewski J; Anniko M; Edström L
    Scan Electron Microsc; 1985; (Pt 1):447-54. PubMed ID: 4001862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic mice expressing D469Delta mutated cartilage oligomeric matrix protein (COMP) show growth plate abnormalities and sternal malformations.
    Schmitz M; Niehoff A; Miosge N; Smyth N; Paulsson M; Zaucke F
    Matrix Biol; 2008 Mar; 27(2):67-85. PubMed ID: 17889519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved cryoprotection and freeze-substitution of embryonic quail retina: a TEM study on ultrastructural preservation.
    Meissner DH; Schwarz H
    J Electron Microsc Tech; 1990 Apr; 14(4):348-56. PubMed ID: 2332811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. II. Intercellular matrix ultrastructure - preservation of proteoglycans in their native state.
    Hunziker EB; Schenk RK
    J Cell Biol; 1984 Jan; 98(1):277-82. PubMed ID: 6707091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of matrix vesicles in chick growth plate as revealed by quick freezing and freeze substitution.
    Akisaka T; Kawaguchi H; Subita GP; Shigenaga Y; Gay CV
    Calcif Tissue Int; 1988 Jun; 42(6):383-93. PubMed ID: 3135108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low temperature vacuum embedding procedure for X-ray microanalysis of biological specimens at subcellular level.
    Wroblewski R; Wroblewski J; Wikström SO; Anniko M
    Scanning Microsc; 1990 Sep; 4(3):787-92; discussion 792-3. PubMed ID: 2080438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.