These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 35860120)
1. Evaluating patients' satisfaction level after using 3D printed PEEK facial implants in repairing maxillofacial deformities. Ahmad AF; Yaakob H; Khalil A; Georges P Ann Med Surg (Lond); 2022 Jul; 79():104095. PubMed ID: 35860120 [TBL] [Abstract][Full Text] [Related]
2. Simulating the Morphological Changes of Facial Deformities after Using 3D-printed Polyether Ether Ketone Facial Implants. Ahmad AF; Yacoub H; Khalil A Plast Reconstr Surg Glob Open; 2024 Aug; 12(8):e6029. PubMed ID: 39114796 [TBL] [Abstract][Full Text] [Related]
3. The Use of the Three-Dimensional Printed Polyether Ether Ketone Implant in Secondary Craniosynostosis Revision. Atamian EK; Hazkour N; Palacios J; Pessino K; Raza SA; Schneider SJ; Bastidas N J Craniofac Surg; 2022 Sep; 33(6):1734-1738. PubMed ID: 35762609 [TBL] [Abstract][Full Text] [Related]
4. Clinical application of 3D-printed PEEK implants for repairing mandibular defects. Li Y; Li Z; Tian L; Li D; Lu B; Shi C; Niu Q; Liu F; Kong L; Zhang J J Craniomaxillofac Surg; 2022 Aug; 50(8):621-626. PubMed ID: 35760658 [TBL] [Abstract][Full Text] [Related]
5. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Wu W; Geng P; Li G; Zhao D; Zhang H; Zhao J Materials (Basel); 2015 Sep; 8(9):5834-5846. PubMed ID: 28793537 [TBL] [Abstract][Full Text] [Related]
6. Complete sternal cleft individualized repair using a 3D-printed polyether ether ketone model: a case report. Zhang G; Wang L; Dang P; Yan Y Eur Heart J Case Rep; 2023 Dec; 7(12):ytad528. PubMed ID: 38116479 [TBL] [Abstract][Full Text] [Related]
7. Polyether-Ether-Ketone (PEEK) and Its 3D-Printed Quantitate Assessment in Cranial Reconstruction. Moiduddin K; Mian SH; Elseufy SM; Alkhalefah H; Ramalingam S; Sayeed A J Funct Biomater; 2023 Aug; 14(8):. PubMed ID: 37623673 [TBL] [Abstract][Full Text] [Related]
8. Combining Intraoral and Face Scans for the Design and Fabrication of Computer-Assisted Design/Computer-Assisted Manufacturing (CAD/CAM) Polyether-Ether-Ketone (PEEK) Implant-Supported Bars for Maxillary Overdentures. Mangano F; Mangano C; Margiani B; Admakin O Scanning; 2019; 2019():4274715. PubMed ID: 31531155 [TBL] [Abstract][Full Text] [Related]
9. Custom made onlay implants in peek in maxillofacial surgery: a volumetric study. Saponaro G; Doneddu P; Gasparini G; Staderini E; Boniello R; Todaro M; D'Amato G; Pelo S; Moro A Childs Nerv Syst; 2020 Feb; 36(2):385-391. PubMed ID: 31367783 [TBL] [Abstract][Full Text] [Related]
10. Case report: One-stage craniectomy and cranioplasty digital workflow for three-dimensional printed polyetheretherketone implant for an extensive skull multilobular osteochondosarcoma in a dog. Hobert M; Sharma N; Benzimra C; Hinden S; Oevermann A; Maintz M; Beyer M; Thieringer F; Guevar J Front Vet Sci; 2024; 11():1459272. PubMed ID: 39268523 [TBL] [Abstract][Full Text] [Related]
11. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [TBL] [Abstract][Full Text] [Related]
12. Additive manufactured polyether-ether-ketone implants for orthopaedic applications: a narrative review. Sun C; Kang J; Yang C; Zheng J; Su Y; Dong E; Liu Y; Yao S; Shi C; Pang H; He J; Wang L; Liu C; Peng J; Liu L; Jiang Y; Li D Biomater Transl; 2022; 3(2):116-133. PubMed ID: 36105567 [TBL] [Abstract][Full Text] [Related]
13. Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications. Han X; Yang D; Yang C; Spintzyk S; Scheideler L; Li P; Li D; Geis-Gerstorfer J; Rupp F J Clin Med; 2019 Feb; 8(2):. PubMed ID: 30759863 [TBL] [Abstract][Full Text] [Related]
14. 3D-printed titanium cages without bone graft outperform PEEK cages with autograft in an animal model. Laratta JL; Vivace BJ; López-Peña M; Guzón FM; Gonzalez-Cantalpeidra A; Jorge-Mora A; Villar-Liste RM; Pino-Lopez L; Lukyanchuk A; Taghizadeh EA; Pino-Minguez J Spine J; 2022 Jun; 22(6):1016-1027. PubMed ID: 34906741 [TBL] [Abstract][Full Text] [Related]
15. Modification of polyether ether ketone for the repairing of bone defects. Chen J; Cao G; Li L; Cai Q; Dunne N; Li X Biomed Mater; 2022 May; 17(4):. PubMed ID: 35395651 [TBL] [Abstract][Full Text] [Related]
16. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites. Zheng J; Kang J; Sun C; Yang C; Wang L; Li D J Mech Behav Biomed Mater; 2021 Jun; 118():104475. PubMed ID: 33773239 [TBL] [Abstract][Full Text] [Related]
17. An In Vitro Study of Osteoblast Response on Fused-Filament Fabrication 3D Printed PEEK for Dental and Cranio-Maxillofacial Implants. Han X; Sharma N; Xu Z; Scheideler L; Geis-Gerstorfer J; Rupp F; Thieringer FM; Spintzyk S J Clin Med; 2019 May; 8(6):. PubMed ID: 31159171 [TBL] [Abstract][Full Text] [Related]
18. Mesh Ti6Al4V Material Manufactured by Selective Laser Melting (SLM) as a Promising Intervertebral Fusion Cage. Przekora A; Kazimierczak P; Wojcik M; Chodorski E; Kropiwnicki J Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409345 [TBL] [Abstract][Full Text] [Related]