These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 3586030)

  • 21. Peptide-protein interaction markedly alters the functional properties of the catalytic subunit of aspartate transcarbamoylase.
    Zhou BB; Schachman HK
    Protein Sci; 1993 Jan; 2(1):103-12. PubMed ID: 8443583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER
    Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacological disposition of N-(phosphonacetyl)-L-aspartate in humans.
    Loo TL; Friedman J; Moore EC; Valdivieso M; Marti JR; Stewart D
    Cancer Res; 1980 Jan; 40(1):86-90. PubMed ID: 7349907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term association of N-(phosphonacetyl)-L-aspartate with bone.
    Ardalan B; Kensler TW; Jayaram HN; Morrison W; Choie DD; Chadwick M; Liss R; Cooney DA
    Cancer Res; 1981 Jan; 41(1):150-6. PubMed ID: 7448755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-operative interactions between the catalytic sites in Escherichia coli aspartate transcarbamylase. Role of the C-terminal region of the regulatory chains.
    Xi XG; Van Vliet F; Ladjimi MM; De Wannemaeker B; De Staercke C; Piérard A; Glansdorff N; Hervé G; Cunin R
    J Mol Biol; 1990 Nov; 216(2):375-84. PubMed ID: 2254935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 13C isotope effect studies of Escherichia coli aspartate transcarbamylase in the presence of the bisubstrate analog N-(phosphonoacetyl)-L-aspartate.
    Parmentier LE; O'Leary MH; Schachman HK; Cleland WW
    Biochemistry; 1992 Jul; 31(28):6598-602. PubMed ID: 1633172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of a simple competitive protein-binding assay technique to the pharmacokinetics of N-(phosphonacetyl)-L-aspartate in humans.
    Erlichman C; Strong JM; Chabner BA
    Cancer Res; 1980 Jun; 40(6):1902-6. PubMed ID: 7371023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tryptophan residues at subunit interfaces used as fluorescence probes to investigate homotropic and heterotropic regulation of aspartate transcarbamylase.
    Fetler L; Tauc P; Hervé G; Cunin R; Brochon JC
    Biochemistry; 2001 Jul; 40(30):8773-82. PubMed ID: 11467937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain.
    Newton CJ; Kantrowitz ER
    Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2309-13. PubMed ID: 2179954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aspartate carbamoyltransferase activity, drug concentrations, and pyrimidine nucleotides in tissue from patients treated with N-(phosphonacetyl)-L-aspartate.
    Moore EC; Friedman J; Valdivieso M; Plunkett W; Marti JR; Russ J; Loo TL
    Biochem Pharmacol; 1982 Oct; 31(20):3317-21. PubMed ID: 7150358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of the T-->R transition on the electrostatic properties of E. coli aspartate transcarbamylase.
    Hariharan M; Allewell NM
    Proteins; 1998 Aug; 32(2):200-10. PubMed ID: 9714159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Communication between polypeptide chains in aspartate transcarbamoylase. Conformational changes at the active sites of unliganded chains resulting from ligand binding to other chains.
    Lahue RS; Schachman HK
    J Biol Chem; 1986 Mar; 261(7):3079-84. PubMed ID: 3512547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-specific substitutions of the Tyr-165 residue in the catalytic chain of aspartate transcarbamoylase promotes a T-state preference in the holoenzyme.
    Wales ME; Hoover TA; Wild JR
    J Biol Chem; 1988 May; 263(13):6109-14. PubMed ID: 3283120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition.
    Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER
    Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural consequences of the replacement of Glu239 by Gln in the catalytic chain of Escherichia coli aspartate transcarbamylase.
    Tauc P; Vachette P; Middleton SA; Kantrowitz ER
    J Mol Biol; 1990 Jul; 214(1):327-35. PubMed ID: 1973463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long range effects of amino acid substitutions in the catalytic chain of aspartate transcarbamoylase. Localized replacements in the carboxyl-terminal alpha-helix cause marked alterations in allosteric properties and intersubunit interactions.
    Peterson CB; Schachman HK
    J Biol Chem; 1992 Feb; 267(4):2443-50. PubMed ID: 1733944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peripheral leukocytes as indicators of the enzymatic effects of N-(phosphonacetyl)-L-aspartic acid (PALA) on human L-aspartate transcarbamoylase (ATCase) activity.
    Kensler TW; Erlichman C; Jayaram HN; Tyagi AK; Ardalan B; Cooney DA
    Cancer Treat Rep; 1980; 64(8-9):967-73. PubMed ID: 7448831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase.
    Middleton SA; Stebbins JW; Kantrowitz ER
    Biochemistry; 1989 Feb; 28(4):1617-26. PubMed ID: 2655696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase.
    Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER
    Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of residues Arg-167 and Gln-231 in both the allosteric and catalytic mechanisms of Escherichia coli aspartate transcarbamoylase.
    Stebbins JW; Zhang Y; Kantrowitz ER
    Biochemistry; 1990 Apr; 29(16):3821-7. PubMed ID: 2191720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.