These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35860383)

  • 1. Different Swine Production Systems Can Shape Slurry Resistome at Mechanism and Class Levels Based on Swine Manure Evaluation.
    Beltrame LC; Zamparette CP; Feltrin C; da Cunha CR; Coltro EP; Athayde GSDS; Filho VB; Tápparo DC; Monteiro J; Kich JD; Palmeiro JK; Wagner G; Fongaro G; Zárate-Bladés CR; Sincero TCM
    Front Cell Infect Microbiol; 2022; 12():879656. PubMed ID: 35860383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic Insights into the Mobilome and Resistome of Sentinel Microorganisms Originating from Farms of Two Different Swine Production Systems.
    Mencía-Ares O; Borowiak M; Argüello H; Cobo-Díaz JF; Malorny B; Álvarez-Ordóñez A; Carvajal A; Deneke C
    Microbiol Spectr; 2022 Dec; 10(6):e0289622. PubMed ID: 36377950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring bacterial diversity and antimicrobial resistance gene on a southern Brazilian swine farm.
    Torres MC; Breyer GM; Riveros Escalona MA; Mayer FQ; Muterle Varela AP; Ariston de Carvalho Azevedo V; Matiuzzi da Costa M; Aburjaile FF; Dorn M; Brenig B; Ribeiro de Itapema Cardoso M; Siqueira FM
    Environ Pollut; 2024 Jul; 352():124146. PubMed ID: 38740246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horizontal Dissemination of Antimicrobial Resistance Determinants in Multiple Salmonella Serotypes following Isolation from the Commercial Swine Operation Environment after Manure Application.
    Pornsukarom S; Thakur S
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance.
    Zhou Y; Fu H; Yang H; Wu J; Chen Z; Jiang H; Liu M; Liu Q; Huang L; Gao J; Chen C
    Microbiome; 2022 Mar; 10(1):39. PubMed ID: 35246246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impacts of viral infection and subsequent antimicrobials on the microbiome-resistome of growing pigs.
    Gaire TN; Odland C; Zhang B; Ray T; Doster E; Nerem J; Dee S; Davies P; Noyes N
    Microbiome; 2022 Aug; 10(1):118. PubMed ID: 35922873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotypic and phenotypic situation of antimicrobial drug resistance of Escherichia coli in water and manure between biogas and non-biogas swine farms in central Thailand.
    Dawangpa A; Lertwatcharasarakul P; Ramasoota P; Boonsoongnern A; Ratanavanichrojn N; Sanguankiat A; Phatthanakunanan S; Tulayakul P
    J Environ Manage; 2021 Feb; 279():111659. PubMed ID: 33310234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spread of antimicrobial resistance genes via pig manure from organic and conventional farms in the presence or absence of antibiotic use.
    Bassitta R; Nottensteiner A; Bauer J; Straubinger RK; Hölzel CS
    J Appl Microbiol; 2022 Oct; 133(4):2457-2465. PubMed ID: 35835564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms.
    Mencía-Ares O; Cabrera-Rubio R; Cobo-Díaz JF; Álvarez-Ordóñez A; Gómez-García M; Puente H; Cotter PD; Crispie F; Carvajal A; Rubio P; Argüello H
    Microbiome; 2020 Nov; 8(1):164. PubMed ID: 33213522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short- and long-read metagenomics insight into the genetic contexts and hosts of mobile antibiotic resistome in Chinese swine farms.
    Li L; Xiao Y; Olsen RH; Wang C; Meng H; Shi L
    Sci Total Environ; 2022 Jun; 827():154352. PubMed ID: 35259381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The European livestock resistome.
    Munk P; Yang D; Röder T; Maier L; Petersen TN; Duarte ASR; Clausen PTLC; Brinch C; Van Gompel L; Luiken R; Wagenaar JA; Schmitt H; Heederik DJJ; Mevius DJ; Smit LAM; ; Bossers A; Aarestrup FM
    mSystems; 2024 Apr; 9(4):e0132823. PubMed ID: 38501800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms.
    Guenther S; Falgenhauer L; Semmler T; Imirzalioglu C; Chakraborty T; Roesler U; Roschanski N
    J Antimicrob Chemother; 2017 May; 72(5):1289-1292. PubMed ID: 28122910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Farm dust resistomes and bacterial microbiomes in European poultry and pig farms.
    Luiken REC; Van Gompel L; Bossers A; Munk P; Joosten P; Hansen RB; Knudsen BE; García-Cobos S; Dewulf J; Aarestrup FM; Wagenaar JA; Smit LAM; Mevius DJ; Heederik DJJ; Schmitt H;
    Environ Int; 2020 Oct; 143():105971. PubMed ID: 32738764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core and variable antimicrobial resistance genes in the gut microbiomes of Chinese and European pigs.
    Tong CH; Huo ZP; Diao L; Xiao DY; Zhao RN; Zeng ZL; Xiong WG
    Zool Res; 2024 Jan; 45(1):189-200. PubMed ID: 38199973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems.
    Brooks JP; Adeli A; McLaughlin MR
    Water Res; 2014 Jun; 57():96-103. PubMed ID: 24704907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Bacteriome and Resistome of Humans and Food-Producing Animals in Brazil.
    de Carvalho FM; Valiatti TB; Santos FF; Silveira ACO; Guimarães APC; Gerber AL; Souza CO; Cassu Corsi D; Brasiliense DM; Castelo-Branco DSCM; Anzai EK; Bessa-Neto FO; Guedes GMM; de Souza GHA; Lemos LN; Ferraz LFC; Bahia MNM; Vaz MSM; da Silva RGB; Veiga R; Simionatto S; Monteiro WAP; Lima WAO; Kiffer CRV; Campos Pignatari AC; Cayô R; de Vasconcelos ATR; Gales AC
    Microbiol Spectr; 2022 Oct; 10(5):e0056522. PubMed ID: 35993730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The quantitative effect of antimicrobial usage in Danish pig farms on the abundance of antimicrobial resistance genes in slaughter pigs.
    Andersen VD; Møller FD; Jensen MS; Aarestrup FM; Vigre H
    Prev Vet Med; 2023 May; 214():105899. PubMed ID: 36940534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of florfenicol and linezolid resistance genes and their bacterial hosts during two waste treatment models in swine feedlots.
    Wang Z; Fu Y; Zheng YL; Jiang N; Jiang H; Wu C; Lv Z; Krüger-Haker H; Feßler AT; Schwarz S; Wang Y
    Sci Total Environ; 2024 Aug; 939():173645. PubMed ID: 38821272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Analysis on Spread and Distribution Characteristic of Antibiotic Resistance Genes in Livestock Farms of Southeastern China.
    Wang N; Guo X; Yan Z; Wang W; Chen B; Ge F; Ye B
    PLoS One; 2016; 11(7):e0156889. PubMed ID: 27388166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights on the effects of antimicrobial and heavy metal usage on the antimicrobial resistance profiles of pigs based on culture-independent studies.
    Ekhlas D; Argüello H; Leonard FC; Manzanilla EG; Burgess CM
    Vet Res; 2023 Feb; 54(1):14. PubMed ID: 36823539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.