BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 35860402)

  • 1. Mini-review: Recent advances in post-translational modification site prediction based on deep learning.
    Meng L; Chan WS; Huang L; Liu L; Chen X; Zhang W; Wang F; Cheng K; Sun H; Wong KC
    Comput Struct Biotechnol J; 2022; 20():3522-3532. PubMed ID: 35860402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites.
    Long H; Liao B; Xu X; Yang J
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30231550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
    Adamidi ES; Mitsis K; Nikita KS
    Comput Struct Biotechnol J; 2021; 19():2833-2850. PubMed ID: 34025952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods.
    Ayoobi N; Sharifrazi D; Alizadehsani R; Shoeibi A; Gorriz JM; Moosaei H; Khosravi A; Nahavandi S; Gholamzadeh Chofreh A; Goni FA; Klemeš JJ; Mosavi A
    Results Phys; 2021 Aug; 27():104495. PubMed ID: 34221854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TransPhos: A Deep-Learning Model for General Phosphorylation Site Prediction Based on Transformer-Encoder Architecture.
    Wang X; Zhang Z; Zhang C; Meng X; Shi X; Qu P
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning and deep learning methods that use omics data for metastasis prediction.
    Albaradei S; Thafar M; Alsaedi A; Van Neste C; Gojobori T; Essack M; Gao X
    Comput Struct Biotechnol J; 2021; 19():5008-5018. PubMed ID: 34589181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study.
    Visweswaran S; Colditz JB; O'Halloran P; Han NR; Taneja SB; Welling J; Chu KH; Sidani JE; Primack BA
    J Med Internet Res; 2020 Aug; 22(8):e17478. PubMed ID: 32784184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites.
    Chen Z; He N; Huang Y; Qin WT; Liu X; Li L
    Genomics Proteomics Bioinformatics; 2018 Dec; 16(6):451-459. PubMed ID: 30639696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM).
    Farid AB; Fathy EM; Sharaf Eldin A; Abd-Elmegid LA
    PeerJ Comput Sci; 2021; 7():e739. PubMed ID: 34901421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance.
    Lu H; Ehwerhemuepha L; Rakovski C
    BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Transfer-Learning-Based Deep Convolutional Neural Network for Predicting Leukemia-Related Phosphorylation Sites from Protein Primary Sequences.
    He J; Wu Y; Pu X; Li M; Guo Y
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model.
    Ke J; Zhao J; Li H; Yuan L; Dong G; Wang G
    Comput Biol Med; 2024 May; 174():108330. PubMed ID: 38588617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review.
    Denysyuk HV; Pinto RJ; Silva PM; Duarte RP; Marinho FA; Pimenta L; Gouveia AJ; Gonçalves NJ; Coelho PJ; Zdravevski E; Lameski P; Leithardt V; Garcia NM; Pires IM
    Heliyon; 2023 Feb; 9(2):e13601. PubMed ID: 36852052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MDCAN-Lys: A Model for Predicting Succinylation Sites Based on Multilane Dense Convolutional Attention Network.
    Wang H; Zhao H; Yan Z; Zhao J; Han J
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34208298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein interaction site prediction.
    Kang Y; Xu Y; Wang X; Pu B; Yang X; Rao Y; Chen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36403092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep metabolome: Applications of deep learning in metabolomics.
    Pomyen Y; Wanichthanarak K; Poungsombat P; Fahrmann J; Grapov D; Khoomrung S
    Comput Struct Biotechnol J; 2020; 18():2818-2825. PubMed ID: 33133423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.