These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 35860573)

  • 1. Myeloid-Derived Suppressor Cells as Key Players and Promising Therapy Targets in Prostate Cancer.
    Siemińska I; Baran J
    Front Oncol; 2022; 12():862416. PubMed ID: 35860573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment.
    Gao X; Sui H; Zhao S; Gao X; Su Y; Qu P
    Front Immunol; 2020; 11():585214. PubMed ID: 33613512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloid-derived suppressor cell and macrophage exert distinct angiogenic and immunosuppressive effects in breast cancer.
    Fang Z; Wen C; Chen X; Yin R; Zhang C; Wang X; Huang Y
    Oncotarget; 2017 Aug; 8(33):54173-54186. PubMed ID: 28903332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point?
    Thomas JA; Gireesh Moly AG; Xavier H; Suboj P; Ladha A; Gupta G; Singh SK; Palit P; Babykutty S
    Front Oncol; 2023; 13():1063051. PubMed ID: 37056346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myeloid-Derived Suppressor Cells in Colorectal Cancer.
    Sieminska I; Baran J
    Front Immunol; 2020; 11():1526. PubMed ID: 32849517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Myeloid-Derived Suppressor Cells in Cancer Immunotherapy.
    Wang Y; Jia A; Bi Y; Wang Y; Yang Q; Cao Y; Li Y; Liu G
    Cancers (Basel); 2020 Sep; 12(9):. PubMed ID: 32942545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization and quantification of
    Hoffmann SHL; Reck DI; Maurer A; Fehrenbacher B; Sceneay JE; Poxleitner M; Öz HH; Ehrlichmann W; Reischl G; Fuchs K; Schaller M; Hartl D; Kneilling M; Möller A; Pichler BJ; Griessinger CM
    Theranostics; 2019; 9(20):5869-5885. PubMed ID: 31534525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloid-derived suppressor cells: The green light for myeloma immune escape.
    Malek E; de Lima M; Letterio JJ; Kim BG; Finke JH; Driscoll JJ; Giralt SA
    Blood Rev; 2016 Sep; 30(5):341-8. PubMed ID: 27132116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression.
    Umansky V; Blattner C; Gebhardt C; Utikal J
    Vaccines (Basel); 2016 Nov; 4(4):. PubMed ID: 27827871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis.
    Hu S; Ma J; Su C; Chen Y; Shu Y; Qi Z; Zhang B; Shi G; Zhang Y; Zhang Y; Huang A; Kuang Y; Cheng P
    Acta Biomater; 2021 Nov; 135():567-581. PubMed ID: 34506976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer.
    Fang B; Lu Y; Li X; Wei Y; Ye D; Wei G; Zhu Y
    Prostate Cancer Prostatic Dis; 2024 Apr; ():. PubMed ID: 38565910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy.
    Aghamajidi A; Farhangnia P; Pashangzadeh S; Damavandi AR; Jafari R
    Cancer Cell Int; 2022 Oct; 22(1):327. PubMed ID: 36303138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion.
    De Cicco P; Ercolano G; Ianaro A
    Front Immunol; 2020; 11():1680. PubMed ID: 32849585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell Analysis Reveals EP4 as a Target for Restoring T-Cell Infiltration and Sensitizing Prostate Cancer to Immunotherapy.
    Peng S; Hu P; Xiao YT; Lu W; Guo D; Hu S; Xie J; Wang M; Yu W; Yang J; Chen H; Zhang X; Zhu Y; Wang Y; Yang Y; Zhu G; Chen S; Wang J; Zhang B; Chen W; Wu H; Sun Z; Ding T; Zhang H; Yi Z; Liu M; Ren S
    Clin Cancer Res; 2022 Feb; 28(3):552-567. PubMed ID: 34740924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide-based targeting of immunosuppressive cells in cancer.
    Trac NT; Chung EJ
    Bioact Mater; 2020 Mar; 5(1):92-101. PubMed ID: 31956738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.
    Dysthe M; Parihar R
    Adv Exp Med Biol; 2020; 1224():117-140. PubMed ID: 32036608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myeloid suppressor cells in cancer and autoimmunity.
    Sica A; Massarotti M
    J Autoimmun; 2017 Dec; 85():117-125. PubMed ID: 28728794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer.
    Lebdai S; Gigoux M; Alvim R; Somma A; Nagar K; Azzouzi AR; Cussenot O; Merghoub T; Wolchok JD; Scherz A; Kim K; Coleman J
    Oncoimmunology; 2019; 8(6):e1581528. PubMed ID: 31069149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty Acid Metabolism in Myeloid-Derived Suppressor Cells and Tumor-Associated Macrophages: Key Factor in Cancer Immune Evasion.
    Siddiqui S; Glauben R
    Cancers (Basel); 2022 Jan; 14(1):. PubMed ID: 35008414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of the tumor microenvironment by curcumin.
    Fu X; He Y; Li M; Huang Z; Najafi M
    Biofactors; 2021 Nov; 47(6):914-932. PubMed ID: 34375483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.