These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35860632)

  • 1. Self-Masked Aldehyde Inhibitors of Human Cathepsin L Are Potent Anti-CoV-2 Agents.
    Zhu J; Li L; Drelich A; Chenna BC; Mellott DM; Taylor ZW; Tat V; Garcia CZ; Katzfuss A; Tseng CK; Meek TD
    Front Chem; 2022; 10():867928. PubMed ID: 35860632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Masked Aldehyde Inhibitors: A Novel Strategy for Inhibiting Cysteine Proteases.
    Li L; Chenna BC; Yang KS; Cole TR; Goodall ZT; Giardini M; Moghadamchargari Z; Hernandez EA; Gomez J; Calvet CM; Bernatchez JA; Mellott DM; Zhu J; Rademacher A; Thomas D; Blankenship LR; Drelich A; Laganowsky A; Tseng CK; Liu WR; Wand AJ; Cruz-Reyes J; Siqueira-Neto JL; Meek TD
    J Med Chem; 2021 Aug; 64(15):11267-11287. PubMed ID: 34288674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MPI8 is Potent against SARS-CoV-2 by Inhibiting Dually and Selectively the SARS-CoV-2 Main Protease and the Host Cathepsin L.
    Ma XR; Alugubelli YR; Ma Y; Vatansever EC; Scott DA; Qiao Y; Yu G; Xu S; Liu WR
    ChemMedChem; 2022 Jan; 17(1):e202100456. PubMed ID: 34242492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Clinical-Stage Cysteine Protease Inhibitor blocks SARS-CoV-2 Infection of Human and Monkey Cells.
    Mellott DM; Tseng CT; Drelich A; Fajtová P; Chenna BC; Kostomiris DH; Hsu J; Zhu J; Taylor ZW; Kocurek KI; Tat V; Katzfuss A; Li L; Giardini MA; Skinner D; Hirata K; Yoon MC; Beck S; Carlin AF; Clark AE; Beretta L; Maneval D; Hook V; Frueh F; Hurst BL; Wang H; Raushel FM; O'Donoghue AJ; de Siqueira-Neto JL; Meek TD; McKerrow JH
    ACS Chem Biol; 2021 Apr; 16(4):642-650. PubMed ID: 33787221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells.
    Mellott DM; Tseng CT; Drelich A; Fajtová P; Chenna BC; Kostomiris DH; Hsu J; Zhu J; Taylor ZW; Tat V; Katzfuss A; Li L; Giardini MA; Skinner D; Hirata K; Beck S; Carlin AF; Clark AE; Beretta L; Maneval D; Frueh F; Hurst BL; Wang H; Kocurek KI; Raushel FM; O'Donoghue AJ; de Siqueira-Neto JL; Meek TD; McKerrow JH
    bioRxiv; 2020 Oct; ():. PubMed ID: 33140046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S1 subsite specificity of a recombinant cysteine proteinase, CPB, of Leishmania mexicana compared with cruzain, human cathepsin L and papain using substrates containing non-natural basic amino acids.
    Alves LC; Melo RL; Sanderson SJ; Mottram JC; Coombs GH; Caliendo G; Santagada V; Juliano L; Juliano MA
    Eur J Biochem; 2001 Mar; 268(5):1206-12. PubMed ID: 11231271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptidomimetic Vinyl Heterocyclic Inhibitors of Cruzain Effect Antitrypanosomal Activity.
    Chenna BC; Li L; Mellott DM; Zhai X; Siqueira-Neto JL; Calvet Alvarez C; Bernatchez JA; Desormeaux E; Alvarez Hernandez E; Gomez J; McKerrow JH; Cruz-Reyes J; Meek TD
    J Med Chem; 2020 Mar; 63(6):3298-3316. PubMed ID: 32125159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Quick Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors*.
    Yang KS; Ma XR; Ma Y; Alugubelli YR; Scott DA; Vatansever EC; Drelich AK; Sankaran B; Geng ZZ; Blankenship LR; Ward HE; Sheng YJ; Hsu JC; Kratch KC; Zhao B; Hayatshahi HS; Liu J; Li P; Fierke CA; Tseng CK; Xu S; Liu WR
    ChemMedChem; 2021 Mar; 16(6):942-948. PubMed ID: 33283984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M
    Sacco MD; Ma C; Lagarias P; Gao A; Townsend JA; Meng X; Dube P; Zhang X; Hu Y; Kitamura N; Hurst B; Tarbet B; Marty MT; Kolocouris A; Xiang Y; Chen Y; Wang J
    bioRxiv; 2020 Jul; ():. PubMed ID: 32766590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subsite specificity of trypanosomal cathepsin L-like cysteine proteases. Probing the S2 pocket with phenylalanine-derived amino acids.
    Lecaille F; Authié E; Moreau T; Serveau C; Gauthier F; Lalmanach G
    Eur J Biochem; 2001 May; 268(9):2733-41. PubMed ID: 11322895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based design, synthesis and evaluation of conformationally constrained cysteine protease inhibitors.
    Scheidt KA; Roush WR; McKerrow JH; Selzer PM; Hansell E; Rosenthal PJ
    Bioorg Med Chem; 1998 Dec; 6(12):2477-94. PubMed ID: 9925304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Gallinamide A Analogs as Potent Inhibitors of the Cysteine Proteases Human Cathepsin L and
    Boudreau PD; Miller BW; McCall LI; Almaliti J; Reher R; Hirata K; Le T; Siqueira-Neto JL; Hook V; Gerwick WH
    J Med Chem; 2019 Oct; 62(20):9026-9044. PubMed ID: 31539239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L.
    Meewan I; Kattoula J; Kattoula JY; Skinner D; Fajtová P; Giardini MA; Woodworth B; McKerrow JH; Lage de Siqueira-Neto J; O'Donoghue AJ; Abagyan R
    Pharmaceuticals (Basel); 2022 Jun; 15(6):. PubMed ID: 35745663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors.
    Bai B; Arutyunova E; Khan MB; Lu J; Joyce MA; Saffran HA; Shields JA; Kandadai AS; Belovodskiy A; Hena M; Vuong W; Lamer T; Young HS; Vederas JC; Tyrrell DL; Lemieux MJ; Nieman JA
    RSC Med Chem; 2021 Oct; 12(10):1722-1730. PubMed ID: 34778773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity.
    Ma C; Xia Z; Sacco MD; Hu Y; Townsend JA; Meng X; Choza J; Tan H; Jang J; Gongora MV; Zhang X; Zhang F; Xiang Y; Marty MT; Chen Y; Wang J
    J Am Chem Soc; 2021 Dec; 143(49):20697-20709. PubMed ID: 34860011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient method for the synthesis of peptide aldehyde libraries employed in the discovery of reversible SARS coronavirus main protease (SARS-CoV Mpro) inhibitors.
    Al-Gharabli SI; Shah ST; Weik S; Schmidt MF; Mesters JR; Kuhn D; Klebe G; Hilgenfeld R; Rademann J
    Chembiochem; 2006 Jul; 7(7):1048-55. PubMed ID: 16688706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges for Targeting SARS-CoV-2 Proteases as a Therapeutic Strategy for COVID-19.
    Steuten K; Kim H; Widen JC; Babin BM; Onguka O; Lovell S; Bolgi O; Cerikan B; Neufeldt CJ; Cortese M; Muir RK; Bennett JM; Geiss-Friedlander R; Peters C; Bartenschlager R; Bogyo M
    ACS Infect Dis; 2021 Jun; 7(6):1457-1468. PubMed ID: 33570381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-molecular-weight aldehyde inhibitors of cathepsin G.
    Lesner A; Wysocka M; Solek M; Legowska A; Rolka K
    Protein Pept Lett; 2009; 16(4):408-10. PubMed ID: 19356138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptidyl beta-homo-aspartals (3-amino-4-carboxybutyraldehydes): new specific inhibitors of caspases.
    Bajusz S; Fauszt I; Németh K; Barabás E; Juhász A; Patthy M; Bauer PI
    Biopolymers; 1999; 51(1):109-18. PubMed ID: 10380358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SARS-CoV-2 main protease (M
    Hu Q; Xiong Y; Zhu GH; Zhang YN; Zhang YW; Huang P; Ge GB
    MedComm (2020); 2022 Sep; 3(3):e151. PubMed ID: 35845352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.