BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35860762)

  • 1. Modeling cardiomyocyte mechanics and autoregulation of contractility by mechano-chemo-transduction feedback.
    Kazemi-Lari MA; Shimkunas R; Jian Z; Hegyi B; Izu L; Shaw JA; Wineman AS; Chen-Izu Y
    iScience; 2022 Jul; 25(7):104667. PubMed ID: 35860762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of Mechano-Sensitive Contraction Autoregulation in Cardiomyocytes.
    Izu L; Shimkunas R; Jian Z; Hegyi B; Kazemi-Lari M; Baker A; Shaw J; Banyasz T; Chen-Izu Y
    Life (Basel); 2021 May; 11(6):. PubMed ID: 34072584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanoelectric coupling and arrhythmogenesis in cardiomyocytes contracting under mechanical afterload in a 3D viscoelastic hydrogel.
    Hegyi B; Shimkunas R; Jian Z; Izu LT; Bers DM; Chen-Izu Y
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechano-electric and mechano-chemo-transduction in cardiomyocytes.
    Izu LT; Kohl P; Boyden PA; Miura M; Banyasz T; Chiamvimonvat N; Trayanova N; Bers DM; Chen-Izu Y
    J Physiol; 2020 Apr; 598(7):1285-1305. PubMed ID: 31789427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed mathematical model of the human atrial cardiomyocyte: integration of electrophysiology and cardiomechanics.
    Mazhar F; Bartolucci C; Regazzoni F; Paci M; Dedè L; Quarteroni A; Corsi C; Severi S
    J Physiol; 2023 Aug; ():. PubMed ID: 37641426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The
    Baillie JS; Gendernalik A; Garrity DM; Bark D; Quinn TA
    Front Physiol; 2023; 14():1086050. PubMed ID: 37007999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic actuation in ChR2-transduced fibroblasts alter excitation-contraction coupling and mechano-electric feedback in coupled cardiomyocytes: a computational modeling study.
    Zhan H; Wang Z; Lin J; Yu Y; Xia L
    Math Biosci Eng; 2021 Sep; 18(6):8354-8373. PubMed ID: 34814303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erratum: Modeling cardiomyocyte mechanics and autoregulation of contractility by mechano-chemo-transduction feedback.
    Kazemi-Lari MA; Shimkunas R; Jian Z; Hegyi B; Izu L; Shaw JA; Wineman AS; Chen-Izu Y
    iScience; 2022 Sep; 25(9):104810. PubMed ID: 36034223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model.
    Balakina-Vikulova NA; Panfilov A; Solovyova O; Katsnelson LB
    J Physiol Sci; 2020 Feb; 70(1):12. PubMed ID: 32070290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Mechanical Preload on Transmural Differences in Mechano-Calcium-Electric Feedback in Single Cardiomyocytes: Experiments and Mathematical Models.
    Khokhlova A; Konovalov P; Iribe G; Solovyova O; Katsnelson L
    Front Physiol; 2020; 11():171. PubMed ID: 32256377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights From Computational Modeling Into the Contribution of Mechano-Calcium Feedback on the Cardiac End-Systolic Force-Length Relationship.
    Guidry ME; Nickerson DP; Crampin EJ; Nash MP; Loiselle DS; Tran K
    Front Physiol; 2020; 11():587. PubMed ID: 32547426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of load on transmural differences in contraction of isolated mouse ventricular cardiomyocytes.
    Khokhlova A; Iribe G; Katsnelson L; Naruse K; Solovyova O
    J Mol Cell Cardiol; 2018 Jan; 114():276-287. PubMed ID: 29217431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and Computational Insight Into Human Mesenchymal Stem Cell Paracrine Signaling and Heterocellular Coupling Effects on Cardiac Contractility and Arrhythmogenicity.
    Mayourian J; Cashman TJ; Ceholski DK; Johnson BV; Sachs D; Kaji DA; Sahoo S; Hare JM; Hajjar RJ; Sobie EA; Costa KD
    Circ Res; 2017 Aug; 121(4):411-423. PubMed ID: 28642329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow force response and auto-regulation of contractility in heterogeneous myocardium.
    Markhasin VS; Balakin AA; Katsnelson LB; Konovalov P; Lookin ON; Protsenko Y; Solovyova O
    Prog Biophys Mol Biol; 2012; 110(2-3):305-18. PubMed ID: 22929956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discontinued stimulation of cardiomyocytes provides protection against hypothermia-rewarming-induced disruption of excitation-contraction coupling.
    Han YS; Schaible N; Tveita T; Sieck G
    Exp Physiol; 2018 Jun; 103(6):819-826. PubMed ID: 29604136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Load dependency in force-length relations in isolated single cardiomyocytes.
    Iribe G; Kaneko T; Yamaguchi Y; Naruse K
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):103-14. PubMed ID: 24976617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of mechanical conditions in the testing of excitation abnormalities in a population of electro-mechanical models of human ventricular cardiomyocytes.
    Dokuchaev A; Kursanov A; Balakina-Vikulova NA; Katsnelson LB; Solovyova O
    Front Physiol; 2023; 14():1187956. PubMed ID: 37362439
    [No Abstract]   [Full Text] [Related]  

  • 18. Thin filament incorporation of an engineered cardiac troponin C variant (L48Q) enhances contractility in intact cardiomyocytes from healthy and infarcted hearts.
    Feest ER; Steven Korte F; Tu AY; Dai J; Razumova MV; Murry CE; Regnier M
    J Mol Cell Cardiol; 2014 Jul; 72():219-27. PubMed ID: 24690333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous AFM Investigation of the Single Cardiomyocyte Electro-Chemo-Mechanics During Excitation-Contraction Coupling.
    Caluori G; Raiteri R; Tedesco M
    Methods Mol Biol; 2019; 1886():355-367. PubMed ID: 30374879
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.