These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35861034)

  • 1. Modular mixing of benzene-1,3,5-tricarboxamide supramolecular hydrogelators allows tunable biomimetic hydrogels for control of cell aggregation in 3D.
    Hafeez S; Passanha FR; Feliciano AJ; Ruiter FAA; Malheiro A; Lafleur RPM; Matsumoto NM; van Blitterswijk C; Moroni L; Wieringa P; LaPointe VLS; Baker MB
    Biomater Sci; 2022 Aug; 10(17):4740-4755. PubMed ID: 35861034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Tuning of a Benzene-1,3,5-Tricarboxamide Supramolecular Fibrous Hydrogel Enables Control over Viscoelasticity and Creates Tunable ECM-Mimetic Hydrogels and Bioinks.
    Hafeez S; Aldana AA; Duimel H; Ruiter FAA; Decarli MC; Lapointe V; van Blitterswijk C; Moroni L; Baker MB
    Adv Mater; 2023 Jun; 35(24):e2207053. PubMed ID: 36858040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Covalent Reinforcement of a Benzene-1,3,5-Tricarboxamide Supramolecular Polymer Enables Biomimetic, Tough, and Fibrous Hydrogels and Bioinks.
    Hafeez S; Decarli MC; Aldana A; Ebrahimi M; Ruiter FAA; Duimel H; van Blitterswijk C; Pitet LM; Moroni L; Baker MB
    Adv Mater; 2023 Sep; 35(35):e2301242. PubMed ID: 37370137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desymmetrization via Activated Esters Enables Rapid Synthesis of Multifunctional Benzene-1,3,5-tricarboxamides and Creation of Supramolecular Hydrogelators.
    Hafeez S; Ooi HW; Suylen D; Duimel H; Hackeng TM; van Blitterswijk C; Baker MB
    J Am Chem Soc; 2022 Mar; 144(9):4057-4070. PubMed ID: 35196454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecularly Engineered Supramolecular Thermoresponsive Hydrogels with Tunable Mechanical and Dynamic Properties.
    Rijns L; Duijs H; Lafleur RPM; Cardinaels R; Palmans ARA; Dankers PYW; Su L
    Biomacromolecules; 2024 Aug; 25(8):4686-4696. PubMed ID: 39059106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive Supramolecular Associations Mediate the Viscoelasticity of Binary Hydrogels.
    Vereroudakis E; Bantawa M; Lafleur RPM; Parisi D; Matsumoto NM; Peeters JW; Del Gado E; Meijer EW; Vlassopoulos D
    ACS Cent Sci; 2020 Aug; 6(8):1401-1411. PubMed ID: 32875081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Dynamics of Cell Adhesion Cues in Supramolecular Hydrogels for Facile Control over Cell Encapsulation and Behavior.
    Diba M; Spaans S; Hendrikse SIS; Bastings MMC; Schotman MJG; van Sprang JF; Wu DJ; Hoeben FJM; Janssen HM; Dankers PYW
    Adv Mater; 2021 Sep; 33(37):e2008111. PubMed ID: 34337776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Potential of Benzene-1,3,5-tricarboxamide Supramolecular Polymers as Biomaterials.
    Varela-Aramburu S; Morgese G; Su L; Schoenmakers SMC; Perrone M; Leanza L; Perego C; Pavan GM; Palmans ARA; Meijer EW
    Biomacromolecules; 2020 Oct; 21(10):4105-4115. PubMed ID: 32991162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing Hyaluronic Acid into Supramolecular Polymers and Hydrogels.
    Varela-Aramburu S; Su L; Mosquera J; Morgese G; Schoenmakers SMC; Cardinaels R; Palmans ARA; Meijer EW
    Biomacromolecules; 2021 Nov; 22(11):4633-4641. PubMed ID: 34662095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring supramolecular guest-host hydrogel viscoelasticity with covalent fibrinogen double networks.
    Loebel C; Ayoub A; Galarraga JH; Kossover O; Simaan-Yameen H; Seliktar D; Burdick JA
    J Mater Chem B; 2019 Mar; 7(10):1753-1760. PubMed ID: 32254917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex supramolecular fiber formed by coordination-induced self-assembly of benzene-1,3,5-tricarboxamide (BTA).
    Wu B; Liu L; Zhou L; Magana JR; Hendrix MMRM; Wang J; Li C; Ding P; Wang Y; Guo X; Voets IK; Cohen Stuart MA; Wang J
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1297-1307. PubMed ID: 34739992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the Ordering in Self-Assembled Glycocalyx Mimicking Supramolecular Copolymers in Water.
    Hendrikse SIS; Su L; Hogervorst TP; Lafleur RPM; Lou X; van der Marel GA; Codee JDC; Meijer EW
    J Am Chem Soc; 2019 Sep; 141(35):13877-13886. PubMed ID: 31387351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange.
    Brown TE; Carberry BJ; Worrell BT; Dudaryeva OY; McBride MK; Bowman CN; Anseth KS
    Biomaterials; 2018 Sep; 178():496-503. PubMed ID: 29653871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties.
    Tong X; Yang F
    Biomaterials; 2014 Feb; 35(6):1807-15. PubMed ID: 24331710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronic Acid Hydrogels with Phototunable Supramolecular Cross-Linking for Spatially Controlled Lymphatic Tube Formation.
    Fan F; Su B; Kolodychak A; Ekwueme E; Alderfer L; Saha S; Webber MJ; Hanjaya-Putra D
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58181-58195. PubMed ID: 38065571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic Assembly of Multiarm PEG-Based Hydrogels as Extracellular Matrix Mimics: Cell Response in the Presence and Absence of RGD Cell Adhesive Ligands.
    Suwannakot P; Nemec S; Peres NG; Du EY; Kilian KA; Gaus K; Kavallaris M; Gooding JJ
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1362-1376. PubMed ID: 36826383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach.
    Włodarczyk-Biegun MK; Farbod K; Werten MW; Slingerland CJ; de Wolf FA; van den Beucken JJ; Leeuwenburgh SC; Cohen Stuart MA; Kamperman M
    PLoS One; 2016; 11(5):e0155625. PubMed ID: 27223105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guest-Host Supramolecular Assembly of Injectable Hydrogel Nanofibers for Cell Encapsulation.
    Miller B; Hansrisuk A; Highley CB; Caliari SR
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4164-4174. PubMed ID: 33891397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration.
    Liu Y; Li L; Li X; Cherif H; Jiang S; Ghezelbash F; Weber MH; Juncker D; Li-Jessen NYK; Haglund L; Li J
    Acta Biomater; 2024 May; 180():244-261. PubMed ID: 38615812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.